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Data-driven machine learning methods present an opportunity to simultaneously assess the impact of
multiple air pollutants on health outcomes. The goal of this study was to apply a two-stage, data-driven
approach to identify associations between air pollutant exposure profiles and children's cognitive skills.
Data from 6900 children enrolled in the Early Childhood Longitudinal Study, Birth Cohort, a national
study of children born in 2001 and followed through kindergarten, were linked to estimated concen-
trations of 104 ambient air toxics in the 2002 National Air Toxics Assessment using ZIP code of residence
at age 9 months. In the first-stage, 100 regression trees were learned to identify ambient air pollutant

ﬁﬂvtgzséxposures exposure profiles most closely associated with scores on a standardized mathematics test administered
Mixtures to children in kindergarten. In the second-stage, the exposure profiles frequently predicting lower math
Machine learning scores were included within linear regression models and adjusted for confounders in order to estimate
Neurodevelopment the magnitude of their effect on math scores. This approach was applied to the full population, and then

to the populations living in urban and highly-populated urban areas. Our first-stage results in the full
population suggested children with low trichloroethylene exposure had significantly lower math scores.
This association was not observed for children living in urban communities, suggesting that confounding
related to urbanicity needs to be considered within the first-stage. When restricting our analysis to
populations living in urban and highly-populated urban areas, high isophorone levels were found to
predict lower math scores. Within adjusted regression models of children in highly-populated urban
areas, the estimated effect of higher isophorone exposure on math scores was —1.19 points (95%
CI —1.94, —0.44). Similar results were observed for the overall population of urban children. This data-
driven, two-stage approach can be applied to other populations, exposures and outcomes to generate

hypotheses within high-dimensional exposure data.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction (Edwards et al., 2010; Freire et al., 2010; Guxens et al., 2012; Lin

et al., 2014; Perera et al., 2006, 2009), autism diagnoses (Becerra

There is growing evidence that early-life exposure to ambient
air pollution may affect neurodevelopment in children. Epidemi-
ologic studies have shown that prenatal and/or early-life expo-
sures to ambient air pollutants are associated with measures of
neurodevelopment and behavior in infants and young children
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et al,, 2013; Jung et al., 2013; Kalkbrenner et al., 2010; Roberts
et al,, 2013; Volk et al, 2013, 2014; Windham et al., 2006) and
attention-deficit/hyperactivity disorder (Newman et al., 2013).
There is also evidence that air pollutants contribute to deficits in
neurodevelopment that persist into later childhood (Suglia et al.,
2008), affecting cognitive outcomes such as academic achieve-
ment. Although ambient air is a complex mixture of multiple
pollutants, most of this previous research has focused on associ-
ations between individual pollutants and children's cognitive
health (Becerra et al., 2013; Edwards et al., 2010; Freire et al., 2010;
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Guxens et al., 2012; Jung et al., 2013; Lin et al., 2014; Newman et al.,
2013; Perera et al., 2006, 2009; Roberts et al., 2013; Suglia et al.,
2008; Volk et al., 2013, 2014; Windham et al., 2006). Environ-
mental epidemiology is now transitioning from single-pollutant
approaches to more holistic investigations of the exposome and
environment's collective effect on health. The recent availability
of datasets containing exposure estimates for multiple air pollut-
ants, population demographics and health outcomes on large
cohorts of children provides an opportunity to leverage methods
for “big data” to advance environmental epidemiology (Bellazzi,
2014).

In a 2014 review, Oakes et al. identified fifty-seven distinct
studies that focused on developing multi-pollutant metrics of
exposure for a variety of outcomes (Oakes et al., 2014a). The au-
thors noted a lack of consensus on which multi-pollutant metrics
were recommended for a given research question. They identified
that a key limitation is that most metrics assume pure additivity of
effects with no potential for synergistic or antagonistic in-
teractions. This can be a major limitation, since pollutants vary
spatially and can combine with each other to create distinct mix-
tures that may have different effects on exposed populations than
the individual pollutants. Identification of these spatially-varying
exposure profiles may allow researchers to pinpoint affected
communities and target more in-depth research into sources and
potential health effects. For example, Coker et al. used Bayesian
profile regression to identify exposure profiles associated with
adverse birth outcomes in Los Angeles (Coker et al., 2016). That
study examined only three pollutants in conjunction with
contextual neighborhood factors that could simultaneously impact
birth outcomes.

Machine learning (ML) methods can be used to identify the
exposures relevant to health outcomes of interest within high-
dimensional exposure data, as well as the potential interactions
between those exposures (Patel, 2017). A recent application of ML
methods, specifically classification and regression tree (CaRT)
(Lemon et al., 2003), in air pollution epidemiology by Gass et al.
examined the relationship of a small number of pollutants to
asthma emergency department (ED) visits (Gass et al., 2014). In that
study, the typical CaRT objective of predicting the dependent var-
iable (here, use of the ED) was replaced by identifying statistically
significant combinations of (discrete) pollutant levels that best
capture the risk of asthma ED visits as compared to referent levels
of the pollutants. Although a promising step forward, this work
confounds the goals of prediction using CaRT methods and esti-
mation of effect sizes of the contributing pollutant combinations. It
may be more appropriate to use CaRT methods as an initial
screening tool to identify combinations of interest and then use a
second analytic method to estimate the effect size, as suggested by
Sun et al. in their recent review (Sun et al., 2013). Using CaRT as a
first-stage method allows for the examination of continuous
exposure variables, as opposed to arbitrary discretization of the
exposures. Additionally, this method can provide a more stable
picture of the association between a pollutant profile and the
outcome of interest than a single tree by learning multiple trees
and then examining the occurrence frequency of the pollutant
profile within slightly different samples from the study population.
The pollutant profiles identified in the first-stage can then be
investigated in more depth in the second-stage by using well-
established epidemiologic methods to control for confounding,
assess effect measure modification and investigate various expo-
sure contrasts.

The goal of our study was to apply a data-driven approach to
identify early-life exposure profiles associated with measures of
cognitive skills and school readiness in a nationally-representative

cohort of 6900 U.S. children (Najarian et al., 2010). This two-stage
approach incorporates machine learning into environmental
health research by first using CaRT methods to identify pollutant
profiles associated with test scores. Then, epidemiologic methods
for effect estimation and assessment of interaction were used to
quantify the magnitude of the combined effect of these pollutant
profiles on the children's math scores. We applied this approach in
combination with stratification based on urbanicity levels, which
were expected to confound the relationship between air pollution
exposure and early cognitive skills.

2. Materials and methods
2.1. Study population

Conducted by the National Center of Education Statistics, the
Early Childhood Longitudinal Study, Birth cohort (ECLS-B) is a
longitudinal study of a nationally representative, random selection
of children born in 2001 and followed from the age of 9 months
through kindergarten entry (Najarian et al., 2010). Women and
children were recruited from birth certificate data and contacted
for study visits at 9 months, 2 years, 4 years, and during kinder-
garten. At each visit, children participated in neurodevelopmental
assessment activities and mothers participated in interviews. At
later study points, childcare providers and teachers also partici-
pated in interviews. All sample sizes mentioned subsequently in
this article are rounded to the nearest 50 to comply with ECLS-B
privacy guidelines. Approximately 74% of eligible women and
children (N = 10,700) agreed to participate at study entry. Of these
children, approximately 83% completed the preschool and kinder-
garten assessments at 4 and 5 years of age (N = 8900). For this
study, children were limited to singleton births, whose mother
provided a residential address at study entry and who completed
the study assessments during Kindergarten, resulting in a cohort of
6900 children.

2.2. Outcome assessment: mathematics standardized tests

At the kindergarten study visit, each child completed a variety of
standardized tests aimed at assessing their basic math and verbal
skills, as appropriate for school-entry. Because math scores may be
less prone to confounding from language spoken in the child's
home (Roberts and Bryant, 2011), our study utilized math scores as
the primary outcome. The 58-item mathematics assessment was
derived from standardized instruments, including the Test of Early
Mathematics Ability (TEMA-3) and mathematics assessments from
other NCES childhood studies. The concepts covered in the
assessment included number sense, properties, operations, mea-
surement, geometry, spatial sense, data analysis, statistics, proba-
bility, patterns, algebra, and functions (Najarian et al., 2010). An
adaptive two-stage design was used to adjust the test-difficulty
based on the number of correct responses during the initial stage
of the assessment. As the goal of our study was to assess the as-
sociation between math scores and exposure to ambient air toxics,
the raw scale score was used in all analyses, as suggested by NCES
analytic guidelines.

2.3. Exposure assessment: estimated concentrations of ambient air
toxics

Exposure to air toxics was assigned using data derived from the
U.S. Environmental Protection Agency's National Air Toxics
Assessment (NATA) (EPA, 2013). Air toxics, also known as hazard-
ous air pollutants, are listed in the Clean Air Act and thought to be
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associated with cancer, birth defects, and other adverse health ef-
fects, but are not regulated by the U.S. National Ambient Air Quality
Standards. Conducted periodically (i.e. 1996, 1999, 2002, 2005,
2011), each NATA assessment estimates the annual average con-
centration of each air toxic for each census-tract in the U.S. using
emissions inventories and complex simulation models. In our
study, data from the 2002 NATA assessment were used, as they
were the closest in time to the ECLS-B study visit at 9 months. Each
child was assigned concentrations of 104 different air toxics using
the residential address provided at the 9-month assessment to
capture early-life exposures. Since the ECLS-B only recorded resi-
dential ZIP code, and the NATA assessments provide census-tract
specific estimates, we constructed weighted average exposures
for each ZIP code based on the percent of each ZIP Code's popula-
tion that resides in a specific census-tract. This method is consistent
with previous research using ECLS-B data (Stoner et al.,, 2013). Of
the 187 air toxics listed in the 2002 NATA data, we considered the
ones that had no more than 5% missing values across the whole
cohort for our analyses, resulting in 104 pollutants for our analysis
(Supplemental Table 1).

2.3.1. Construction of datasets

To determine if confounding would affect the pollutant profiles
identified by CaRT, the population was stratified by the urbanicity
of the ZIP Code of the child's residence. Urbanicity was considered
explicitly as a stratification factor as it might serve as a proxy for
socio-demographic profiles that could confound the association of
interest between air toxics and test scores. As a confounder,
urbanicity is hypothesized to be associated with both the air toxics
that make-up potential air pollution profiles and school readiness
skills in mathematics. Using the 2003 U.S.D.A Economic Research
Service Rural-Urban Continuum Codes, each child was assigned an
urbanicity code based on their county of residence at 9 months of
age (USDA, 2003). All the children who lived in counties designated
as metropolitan (codes 1—3) were considered to be living in an
urban community. All the children who lived in counties desig-
nated as a metropolitan area with a population of 1 million or more
(code 1) were considered to be living in a highly-populated urban
community. The two-stage approach was then applied to the full
ECLS-B population and then repeated using only children who lived
in urban communities and again using the subset of the children
who lived in highly-populated urban communities. The pop-
ulations are not mutually-exclusive, but were intended to investi-
gate the hypothesis that finer levels of stratification would reduce
residual confounding.

2.4. Data analysis

2.4.1. Stage I, CaRTs

CaRTs are predictive models represented as trees consisting of
nodes and edges. The internal nodes of a tree denote decision
points based on values of the selected features, and the associated
edges denote actions to be taken depending on the decision made
at these nodes (Lemon et al., 2003). Leaf nodes at the end of paths
starting from the root node indicate the value of the outcome (class
label or regression values) of the examples that satisfy the decision
points on these paths. Root-to-leaf paths are referred to as branches
or combinations constituting the tree, each of which can be rep-
resented as a decision rule with the internal node decision(s) as the
antecedent(s) and the leaf node outcome as the consequent. While
many algorithms could have been used for automatically deriving
CaRTs from high-dimensional data sets, we focused on using the
algorithm implemented in the widely used rpart R package

(Therneu and Atkinson, 2015). The rpart () function in this package
was used to infer the regression trees in our study, with the
response set to math scores, (predictor) data set to the pollutant
levels, method set to “anova” and all the other parameters of the
function set to their default values. With these basic settings, the
rpart () function evaluates each exposure and a corresponding
threshold to find the (exposure, threshold) combination that sepa-
rates the full set of subjects into two more homogeneous subsets
based on whether their exposure level was higher or lower than the
threshold. The same algorithm is then applied recursively to these
subsets to find progressively more predictive/discriminative
(exposure, threshold) combinations, resulting in the root-to-leaf
paths described above. To prevent overfitting of each of these
trees, i.e. the trees becoming too specific to the training data, a ten-
fold cross-validation procedure was run to optimize the parameters
and sizes of the trees (Arlot and Celisse, 2010). This was accom-
plished by setting the control parameter of the rpart () function to
rpart.control (cp = 0.0,xval = 10).

CaRT models, including those inferred using rpart, offer several
advantages, such as (i) easy interpretability in terms of under-
standable trees and/or rules, (ii) ability to identify non-linear re-
lationships between the features (exposures) and the outcome(s)
(math scores), (iii) possibility of identifying interaction(s) among
the features (exposures), (iv) making no/minimal assumptions
about data distributions, (v) tolerance to missing values and out-
liers in the data, and (vi) implicit outcome-specific feature (expo-
sure) prioritization/selection during tree inference. However, CaRT
methods suffer from several potential limitations as well, such as (i)
being prone to overfitting the (training) data, and (ii) being sensi-
tive to small perturbations in the data and/or model/algorithm
parameters. To address these potential limitations of individual
decision trees, we followed an approach similar to a random forest,
where a large number of trees were learnt on multiple partitions of
the data instead of a single tree from the full dataset. This allowed
us to more reliably identify pollutants or their combinations that
are found to influence math scores across multiple decision trees,
instead of just one.

Specifically, the full ECLS-B dataset was randomly partitioned
100 times in an 80:20 ratio into different training and test sets. The
regression trees inferred from each of the training sets were then
evaluated on the corresponding test sets to assess their predictive
performance in term of the coefficient of determination (R?) be-
tween the predicted and true math scores. For downstream ana-
lyses, the trees were then decomposed into their constituent
branches (combinations of pollutant(s)), and their frequencies
counted across the 100 trees. Finally, in order to assess the signif-
icance of the above R% and pollutant combination frequency sta-
tistics, we assessed them in 10,000 random counterparts of the
trees inferred from the true math scores. For this, these scores
were randomly permuted 100 times, and the tree inference and
statistics collection process was repeated 100 times (training-test
splits) for each of these sets of permuted scores. R code for the
developed approach can be obtained by contacting the corre-
sponding author.

2.4.2. Stage II: assessment of interaction and effect size

Statistical interactions between pollutants within pollutant
profiles identified in Stage I were assessed by including interaction
terms between pollutants within multivariable linear regression
models and conducting Wald tests, using an a priori alpha level of
0.1. Pollutants were modeled as dichotomous variables using the
median threshold calculated across all branches where the
pollutant profile appeared. All models were adjusted for
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confounders identified from the existing literature and directed
acyclic graph analysis using DAGitty software (Supplemental Fig. 1)
(Greenland et al., 1999; Textor et al., 2011). The confounders iden-
tified as part of the minimally sufficient adjustment set and
included in the second-stage models were maternal age at the time
of the child's birth, maternal marital status at baseline, child's race/
ethnicity, a socioeconomic index derived from maternal and
paternal occupation, education and household income, a neigh-
borhood deprivation index derived from census variables, and the
primary language spoken in the home. The effect of pollutant
profiles on math scores were estimated by restricting to sub-
populations defined by the trees learned in Stage 1. For example, a
pollutant profile in Stage 1 could identify a population with lower
math scores that had greater exposure to pollutant A, pollutant B,
and pollutant C. The modelling strategy was to restrict to the
population with greater levels of exposure to pollutant A and B and
then determine the effect of exposure to pollutant C by comparing
those with greater exposure to pollutant C to those individuals in
the subpopulation who had lower exposure to pollutant C. Imple-
menting this strategy, multivariable linear regression models,
adjusted for the same set of confounders listed above, were con-
structed to estimate the magnitude of the association between
subpopulation-average math scores and pollutant exposure. How-
ever, the approach is flexible enough to accommodate other
regression strategies, such as comparing those with the complete
pollutant profile to all others within the full population. Because
the primary goal of this manuscript was methods development, the
complex sampling design of the ECLS-B was ignored in the analysis.

To illustrate how the results can be used to conduct more tar-
geted research on the populations affected by these pollutant

Table 1

profiles, U.S. Census data from 2000 were compiled and used to
construct a demographic profile of impacted communities.
Impacted communities were defined by ZIP Codes in the United
States that matched the identified pollutant profiles, i.e., had con-
centrations of the constituent pollutants greater than the identified
thresholds.

3. Results

Demographic characteristics of the study populations are pro-
vided in Table 1. Approximately 6800 children in the full population
had data on their address at 9 months of age, participated in the
study through kindergarten entry and completed the mathematics
assessment. The majority of children lived in urban communities
(n =5550) and more than half lived in very highly-populated urban
communities, defined as having more than 1 million residents
(n = 3650). Children living in urban communities have a different
demographic profile than the full population. Urban children were
more likely to be non-White, have a language other than English
spoken at their home and live in a household with a slightly higher
SES Index than the full population. Mothers in urban communities
were more likely to be married and were slightly older at the time
of their child's birth than mothers in the full study population.
These differences were even more pronounced when comparing
children in highly-populated urban communities to the full popu-
lation. Average math score varied by urbanicity as children in
the highly-populated urban communities had slightly higher
average scores than the full population and the total urban
population.

Demographic characteristics (%) of the Early Childhood Longitudinal Study, 2002 Birth Cohort stratified by target population.®

Full population

Population in urban communities

Population in highly-populated urban communities

N=(6800)" N=(5550)" N=(3650)"
Child Sex
Male 50.3 50.7 50.7
Female 49.7 49.3 49.3
Child Race
White, non-Latino/a 44.5 41 35.1
Black/African-American, non-Latino/a 17.1 17.6 18.1
Latino/a 21.8 24.2 26.9
Asian, non-Latino/a 124 14.8 18.7
Other 43 24 1.2
Primary Language Spoken in Home
Non-English Language 20.3 24.2 303
English Language 79.7 75.8 69.7
Socioeconomic Status Index”
First Quintile 18.6 17.3 17
Second Quintile 18.8 17.6 16.3
Third Quintile 19.1 185 16.3
Fourth Quintile 19.6 20.2 20.5
Fifth Quintile 23.8 26.4 30
Maternal Marital Status
Married 67.7 69.8 724
Separated/Divorced/Widowed 6 5.5 4.6
Never Married 26.3 24.7 23
Maternal Age at Child's Birth
Less than 20 years of age 7 6.1 5.1
20-29 years of age 46.8 44.6 40.5
30-37 years of age 36.7 38.8 42.7
38 years of age and older 9.6 10.5 11.7
Math Score in Kindergarten® 44.1 (10.5) 445 (10.5) 45.1 (10.5)

2 Missing data not shown so some columns do not equal 100%.

b Frequency counts rounded to the nearest 50 per publishing guidelines of the National Center of Education Statistics.
¢ Socioeconomic Status Index is a composite index, provided in the ECLS-B dataset, derived from maternal and paternal information on education, occupations and

household income.
4 Mean (Standard deviation).
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3.1. First-stage analysis: regression trees

One hundred regression trees consisting of pollutant combina-
tions that correlated with math scores of children in different
segments of the target populations were learnt using a systematic
machine learning methodology. lllustrative examples of these trees
are shown in Fig. 1. Across all populations, the learned regression
trees were substantially more predictive than their random coun-
terparts, thus indicating the ability of the first-stage regression
trees to capture relationships that existed within the data. Specif-
ically, for the total population, urban and very highly-populated
urban populations, the trees learnt from true outcomes (math
scores) are more predictive those learnt from the randomly
permuted versions of the true outcomes (R? = 0.067 vs. 6.6 x 1074,
RZ=0.074 vs. 1.1 x 1073 and R? = 0.088 vs. 1.4 x 10> respectively).
Within the full, urban and highly-populated urban populations, the
first-stage analysis identified 11, 10 and 9 pollutant profiles
respectively that predicted math scores lower than the population
average, and were found in at least 10% of the learned trees
(Supplemental Table 2). Thresholds of pollutant concentrations that
dictated node splits within the trees were relatively consistent
across trees.

Within the total population, the solvent trichloroethylene was
the root node (most predictive pollutant) for a majority of the trees
(63%), with children living in communities with ambient trichlo-
roethylene less than 0.02505 pg/m> having lower than average
math scores. Among children exposed to trichloroethylene at or
greater than 0.02505 pg/m°, higher concentrations of isophorone
or manganese also emerged from the tree-based analysis as pre-
dicting lower than average math results. Other pollutant profiles
were also identified, but in fewer than 15% of trees. Within the
urban population, trichloroethylene was no longer identified as a
predictor of math scores and the most common root node (65% of
trees) associated with lower math scores was isophorone with a
threshold concentration of greater than 0.00047 pg/m>. Among
children with exposure to lower ambient isophorone, different
pollutants emerged within the pollutant profiles, most commonly
benzyl chloride, either alone or in combination with other pollut-
ants. When the population is restricted further to children living in
very highly populated urban communities, isophorone remains
the most common root node (73% of trees), with similar
thresholds of exposure indicating lower than average math scores.
However, among children exposed to low isophorone levels,
different combinations of air pollutants, including manganese and
ethyl acrylate, begin to identify those with lower than average math
scores.

3.2. Second-stage analysis: multivariable regression models

Table 2 shows the adjusted betas and 95% confidence intervals
resulting from the second-stage analysis of examining the identi-
fied combinations within linear regression models adjusting for
confounders. Adjusting for confounders eliminated some of the
associations identified in the first-stage analysis. However, among
the pollutant profiles identified in more than 50% of the trees, the
pollutant profiles remained associated with lower math scores,
even after adjusting for confounders. Isophorone was the most
consistent pollutant profile associated with low math scores
observed across populations. Within the full population, among
children with exposure to higher levels of trichloroethylene, higher
exposure to isophorone was associated with slightly more than a 1
point decrement on the mathematics assessment (—1.31, 95%
CI —2.01, —0.61). A similar magnitude of association was observed
between isophorone and math scores in both the urban and highly-
populated urban populations (a decrement in average math score

of —1.12 and —1.19 points respectively). Among the children living
in areas with lower isophorone levels, lower levels of other pol-
lutants, such as ethyl acrylate and benzyl chloride, were also
associated with lower than average math scores.

3.3. Statistical interaction between pollutants

The only evidence of statistical interaction between pollutants
within pollutant profiles was between ethyl acrylate and manga-
nese in children living in highly-populated urban areas exposed to
lower isophorone levels (Wald-test on the interaction term p-
value = 0.08). The estimated association of higher manganese
exposure with math scores was greater when ethyl acrylate was
lower. Among children with lower exposure to both isophorone
and ethyl acrylate, the average math score was 2.4 points lower
among children who had higher manganese exposure (95%
Cl —4.52, —0.28). The association between manganese and test
scores was attenuated among the children with low exposure to
isophorone but high exposure to ethyl acrylate (—0.97 95%CI -2.04,
0.09).

3.4. Demographic characteristics of identified subpopulations

Using this two-stage method identified that children living in
areas with low levels of trichloroethylene and higher levels of
isophorone had lower than average math scores. Within the full
study population, lower trichloroethylene exposure was associated
with rural neighborhoods, while higher isophorone exposure was
associated with living in urban areas. When we restricted the study
population to those living within urban communities to account for
confounding by community levels of urbanicity, children living in
areas with greater isophorone exposure continued to have lower
than average math scores and trichloroethylene exposure was no
longer associated with math scores.

Identifying pollutant profiles associated with lower than
average math scores can facilitate more detailed research focused
on the populations exposed to those pollutants. For example,
looking beyond the study population to the broader US population
revealed that 9% of ZIP codes in highly-populated urban areas have
isophorone levels at or greater than the threshold observed in this
study (0.47 ng/m>). In this context, Table 3 presents an illustrative
example of the type of demographic analysis that can be done to
facilitate subsequent studies and research on environmental justice
issues that may be associated with health disparities. Examining
communities with higher isophorone levels reveals that these
communities are more likely to be in the Northeastern United
States and have greater proportions of residents who are Black,
non-Hispanic, living in poverty, and renting, as opposed to owning,
their housing (Table 3).

4. Discussion

Using a two-stage data analysis approach, we were able to
identify air pollutant profiles associated with lower math test
scores in kindergarten children. Implementation of machine
learning as a first-stage approach to identify potentially relevant
pollutant profiles allowed for informed hypothesis generation. This
is shown by the fact that the regression trees learned from the real
data were substantially more predictive than those learnt from
randomized data. Another advantage of using regression trees is
that complex combinations of pollutants can be relatively easily
visualized and subsequently analyzed in the second stage of our
approach. By assessing these pollutant combinations identified
from the trees within epidemiologic models and after adjusting for
potential confounders, we were able to detect isophorone as a
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Fig. 1. Representative regression trees from first-stage analysis of air toxics and child's math scores, Early Childhood Longitudinal Study Birth Cohort 2001. A) Full Study Population;

B) Subset of Population living in Urban Communities; C) Subset of Population living

in Highly-Populated Urban Communities. Each internal node in these trees indicates an

(exposure, threshold) combination that separates the current sample of subjects (approximate size shown within the node) into two more homogeneous subpopulations based on
whether their levels for the exposure are higher or lower than the threshold. Following these nodes from the root of the tree to the terminal/leaf nodes defines both the candidate
pollution profiles as well as the populations subjected to them that are analyzed in Stage 2 of our approach.



Table 2

Adjusted betas® and 95% confidence Intervals for the effect of air toxics on math scores in kindergarten children within subpopulations defined by tree results, Early Childhood Longitudinal Study, Birth-Cohort 2001-2007.°

Full population (N = 6100)

Population living in urban communities (N = 5050)

Population living in urban communities with >1 million people

(N = 3350)
Pollutant combination identified Number of children Beta’ and 95% CI Pollutant combination Number of children Beta and 95% CI Pollutant combination Number of children Beta and
within regression Trees® exposed to entire identified within regression exposed to entire identified within regression exposed to entire 95% CI
pollutant combination/ trees® pollutant combination/ Trees® pollutant
number of children in Number of children in combination/Number
subpopulation defined subpopulation defined of children in
by all but last pollutant by all but last pollutant subpopulation
within the combination within the combination defined by all but last
pollutant within the
combination
TRICHLOROETHYLENE<0.02505 1450/6100 -1.36 ISOPHORONE > 0.00047 1000/5050 -1.12 ISOPHORONE > 0.00047 800/3350 -1.19
(-1.95, —0.77) (~1.79, —0.46) (~1.94, —0.44)
TRICHLOROETHYLENE > 0.02505 900/4650 -1.31 ISOPHORONE < 0.00047 AND  750/4050 -1.79 ISOPHORONE <0.00047 400/2050 -2.1
AND ISOPHORONE > 0.000462 (-2.01, -0.61) BENZYL CHLORIDE < 1.2e—6 (—2.54, —-1.05) AND MANGANESE (-3.06, -1.11)
COMPOUNDS < 0.002474
AND ETHYL ACRYLATE
<1.8e—-07
TRICHLOROETHYLENE > 0.02505 900/4650 -1.01 ISOPHORONE < 0.00047 AND  600/1700 -1.63 ISOPHORONE < 0.00047 400/2050 -0.97
AND MANGANESE (-1.73, —0.29) BENZYL CHLORIDE > 1.2e—6 (—2.60, —0.67) AND ETHYL (—2.04, 0.09)
COMPOUNDS > 0.002447 AND CRESOL/CRESYLIC ACID ACRYLATE > 1.8e—07 AND
(MIXED.ISOMERS) < 0.0054 MANGANESE
AND 1,2,4- COMPOUNDS > 0.0024
TRICHLOROBENZENE > 2.3e—5
TRICHLOROETHYLENE > 0.02505 650/3750 —1.54 ISOPHORONE < 0.00047 AND  650/1700 -0.97 ISOPHORONE < 0.00047 500/2550 —1.08
AND MANGANESE (=237, -0.70) BENZYL CHLORIDE > 1.1 e-6 (—1.98, 0.04) AND MANGANESE (-2.03, -0.13)
COMPOUNDS < 0.002447 AND AND CRESOL/CRESYLIC ACID COMPOUNDS > 0.002474
ISOPHORONE > 0.000472 (MIXED ISOMERS) < 0.0054
AND ALLYL CHLORIDE > 4.6e—6
TRICHLOROETHYLENE < 0.02505 750/1450 —0.52 ISOPHORONE < BENZYL 250/1600 -0.19 ISOPHORONE < 0.00047 500/2550 —2.45
AND ARSENIC (-1.76,0.72) CHLORIDE > CRESOL/CRESYLIC (-1.65, 1.25) AND ETHYL (-3.32, -1.59)
COMPOUNDS < 0.000243 ACID (MIXED ISOMERS) >= ACRYLATE < 1.8e—07
MANGANESE COMPOUNDS>=
TRICHLOROETHYLENE > 0.02505 100/650 -5.19 ISOPHORONE > 0.00047 AND  700/3800 —-1.54 ISOPHORONE < 0.00046 300/500 0.97
AND ISOPHORONE < 0.000462 (-7.18, -3.2) ETHYLENE DICHLORIDE (1,2- (-2.35, -0.72) AND ETHYL (0.67, 2.62)
AND MANGANESE DICHLOROETHANE) < 0.00424 ACRYLATE < 1.4e—07 AND
COMPOUNDS > 0.002447 STYRENE < 0.04093
ETHYL ACRYLATE < 5.0 e—13
TRICHLOROETHYLENE < 0.02505 700/1450 0.52 ISOPHORONE < 0.00047 AND  50/750 —2.50 ISOPHORONE < 0.00046 200/500 -0.97
AND ARSENIC (-0.72, 1.76) BENZYL CHLORIDE < 1.2 e-6 (—4.97, —0.03) AND ETHYL (-2.62,0.67)
COMPOUNDS > 0.000243 AND MANGANESE ACRYLATE < 1.4e—07 AND
COMPOUNDS > 0.0020 STYRENE > 0.04093
TRICHLOROETHYLENE > 0.02505 550/1850 —1.98 ISOPHORONE < 0.00047 AND  250/750 —3.87 ISOPHORONE < 0.00045 250/2000 -1.12
AND MANGANESE < 0.002447 (=3.02, —0.93) BENZYL CHLORIDE < 1.2e-6 (—6.85, —0.88) AND ETHYL (-2.32,0.08)
AND CRESOL/CRESYLIC AND VINYL ACETATE > 0.00125 ACRYLATE > 1.4e—07 AND
ACID > 0.00528 AND METHYL
DIMETHYL METHACRYLATE > 0.00264
FORMAMIDE > 0.0045
TRICHLOROETHYLENE > 0.02505 100/900 —4.87 ISOPHORONE < 0.00047 AND  700/750 2.58 ISOPHORONE < 0.00047 100/500 -3.81
AND MANGANESE (—6.84, —2.89) BENZYL CHLORIDE < 1.2 e—6 (0.84, 4.33) AND MANGANESE (-5.74, -1.87)

COMPOUNDS > 0.002447 AND
ETHYL ACRYLATE < 5.0e-13

AND MANGANESE
COMPOUNDS < 0.0020

COMPOUNDS > 0.00247
AND ETHYL ACRYLATE<
2.128e—-07
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(~2.78, —0.47)

-1.62

AND CRESOL/CRESYLIC ACID
(MIXED.ISOMERS) < 0.0054

AND 1,2,4-
TRICHLOROBENZENE < 2.3e-5

AND METHYLENE

BENZYL CHLORIDE > 1.2 e—6
CHLORIDE < 0.20

5.36 (2.97, 7.76) ISOPHORONE < 0.00047 AND  400/1100

—0.81
(~1.45, —0.17)

/650
/4450

AND ISOPHORONE < 0.000458

AND MANGANESE

COMPOUNDS > 0.003918

COMPOUNDS 0.002447 AND
ETHYL ACRYLATE > 1.4e-13

AND LEAD
2 Betas and 95% confidence intervals result from a linear regression model adjusted for the following covariates: child race, maternal age, maternal marital status, socioeconomic index, language spoken in the home, and

neighborhood deprivation index.
d Beta represents the average effect of the full pollutant combination among the subpopulation identified by all but the last pollutant within the combination.

¢ Pollutant thresholds used to define exposure combinations represent the median threshold found in combinations observed across trees.

b All numbers rounded to the closest 50 in accordance with publication guidelines of the National Center of Education Statistics.

TRICHLOROETHYLENE > 0.02505 600
TRICHLOROETHYLENE > 0.02505 1450
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potential marker of an early-life pollutant exposure profile associ-
ated with lower math scores in kindergarten children. Although a
single pollutant, isophorone is commonly used in industrial pro-
cesses and is likely related to a distinct pollutant profile that arises
from these processes.

The occupational health literature suggests that exposure to
isophorone at high levels can have adverse health effects (ATSDR,
1998; Samimi, 1982), and a recent review listed isophorone has a
potentially neurotoxic agent (Grandjean and Landrigan, 2006).
However, ambient monitoring data for air toxics are sparse, and
there are limited data on the health effects of pollutants like
isophorone at ambient levels. Thus, it can be difficult to interpret
results suggesting that ambient isophorone exposure is associ-
ated with lower math scores in kindergarten. A widely-used
solvent in multiple industries, isophorone is highly reactive and
likely to be oxidized by reaction with hydroxyl radicals and ozone
within the ambient air (ATSDR, 1998). Evaporation of solvents
containing isophorone is considered one of the primary sources
of inhalatory exposure in urban communities. Because of its
relatively short half-life in ambient air, air monitoring is espe-
cially limited and the biological plausibility of inhalation of iso-
phorone as a causal contributor to adverse neurodevelopment is
unclear. It is possible that communities with higher estimated
isophorone levels are near sources of exposure that also
contaminate water or soil with isophorone. As stated above, it is
also possible that isophorone could be a marker for (mixtures of)
other pollutants with a similar source, as isophorone is common
in many manufacturing industries, including printing and metal-
coating. Future, more targeted research in areas with elevated
isophorone levels should attempt to decipher the more detailed
pollutant profile associated with elevated levels of isophorone.
Using more targeted study designs to conduct research within the
subpopulations of exposed communities identified by our
approach can help address these unanswered questions regarding
the relationship between isophorone and children's neuro-
developmental outcomes.

As mentioned earlier, there have been a number of methods
developed to identify pollutant profiles within ambient air and/or
associate them with health outcomes in the population. Prior ap-
proaches have utilized self-organizing maps, a form of unsuper-
vised learning (Pearce et al., 2016), multipollutant indicators that
combine measured pollutant concentrations with emissions data
(Oakes et al., 2014b), k-means and hierarchical clustering (Austin
et al,, 2012), and Bayesian clustering techniques that account for
the uncertainty in the identification of the pollutant profiles
(Molitor et al., 2016). All of these approaches have been shown to
identify and estimate the health effects of air pollutant profiles.
However, they have not been used in the context of high-
dimensional exposure data. Most have been implemented while
examining less than ten air pollutants at a time. The goal of the
data-driven approach presented here is to identify pollutant pro-
files within the context of over one hundred air pollutants. Our
data-driven approach could be used as a first method within high-
dimensional exposure data before other, more targeted and refined
methods for estimating the effects of pollutant profiles (after ac-
counting for confounding) are applied within the smaller subset of
identified pollutants.

Notably, although our data-driven approach holds potential for
making relevant discoveries in environmental health and expo-
some research, it is also important to acknowledge the possible
limitations. First, it's important to consider the quality of the data
used with a data-driven methodology, such as the one proposed
here. For example, the NATA air pollution data we used consist of
model-derived estimates of ambient air pollutant concentrations
rather than of actual monitoring data. There is a greater level of
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Table 3

Selected demographic characteristics of children within the Early Childhood Longitudinal Study, Birth Cohort living in highly-populated urban ZIP codes, by ambient iso-

phorone level.

ZIP Code's estimated ambient concentration of isophorone

>0.47 ng/m> <0.47 ng/m?

Geographic Region

Northeast 36.3 20.0

Southern/Southeastern 28.1 335

Central 232 272

Western 12.5 193
Community Demographics Average Proportion of Residents with Less than a HS Education 22.0 19.7
Average Proportion of Residents who are unemployed 3.5 4.4
Average Proportion of Residents who are living in poverty 8.8 11.8
Average Proportion of Residents who are Black, non-Hispanic 19.2 7.8
Average Proportion of Residents who Rent their Homes 42.7 25.9
Average Proportion of Male Residents who have Professional Occupations 16.8 141
Average Proportion of Female Residents who have Professional Occupations 235 23.0
Average Proportion of Residents who lived in the same community for the previous five years 54.6 58.4

4 Demographic data from the 2000 US Census.

uncertainty associated with this kind of exposure estimate due to
both the estimation process and the representativeness of the in-
dividual's exposure experience (EPA, 2002). Additionally, this un-
certainty varies by individual pollutant. Such uncertainty poses a
challenge for most data-driven methods, such as the use of
regression trees in our approach, since they don't explicitly take
this uncertainty into account (Tsang et al., 2011). Due to this issue,
our trees may identify a profile consisting of pollutants with highly
uncertain measurements as associated with lower math scores.
Although we hope that the second stage of our approach is able to
eliminate some of these potentially spurious associations, the
possibility of this uncertainty affecting the final results of our
approach can not be ignored. One way of addressing the issue of
uncertainty in the estimated air pollution data is to repeat the
application of our approach using actual air monitoring data. This
can be difficult since many air toxics are not monitored, but there
are local areas within the United States and Canada with availability
of air toxics monitoring data, although not at the scale modeled by
the NATA assessments (Galarneau et al., 2016; Myers et al., 2015;
Propper et al., 2015).

We focused on early-life as a critical window of exposure, and
assigned exposure to air toxics using only the residential location
at 9 months. This timepoint was within the critical window of
brain development, prior to the age of 2, when the brain undergoes
rapid growth and development (Gao et al., 2009; Gilmore et al.,
2007; Knickmeyer et al., 2008). It is possible that exposure after
this time period may also contribute to a child's neuro-
development and eventual school readiness. Within this popula-
tion, approximately 59% of children moved to at least once
between the 9 month study visit and the school readiness as-
sessments at age 5. This suggests that the results we see, such as
the association between isophorone and math scores, could be due
to a later exposure that is correlated with the exposure, e.g. iso-
phorone, at 9 months. Since our approach currently only considers
static exposures, future work should address how exposure to
mixtures during different windows of development impact chil-
dren's cognitive outcomes.

Additionally, the dataset(s) to which such approaches are
applied should be representative of the source population(s). For
instance, our dataset includes approximately 7000 children living
throughout the U.S., which strengthens our ability to draw in-
ferences for general populations. However, there is great spatial
variability in exposure profiles, demographics and contextual
characteristics of a nationally-representative population. This leads

to the issues of confounding that we observed when running the
first-stage models on the full population. We were able to use
stratification by urbanicity to remove some confounding and
identify relevant exposure profiles. Future applications of this
approach will need to consider alternative methods to account for
confounding prior to implementation of the first-stage CaRT
models if stratification is not a reasonable option, such as due to
sample size limitations. Additionally, it is possible that there is
some spatial clustering of test scores that we are not accounting for
in our models. The sampling scheme of the ECLS-B and its
geographic scope of representing the entire country effectively
limits the number of children in any given ZIP code or geographic
area to be a small percentage of the population. However, some of
the pollutant profiles identified are found in only a very small
proportion of the population and could be due to the regression
trees in the first-stage identifying a few spatially-correlated
geographic areas. In these instances, it's possible that some other
factor that is associated with the pollutant profile and varies
spatially is confounding our results. Our second-stage models
adjust for the demographic factors that often vary spatially. How-
ever, other unmeasured environmental factors that co-vary with
the air pollutant profiles and/or differences in how well the
NATA estimates represent actual exposures could be contributing to
our results. Finally, to draw robust conclusions about specific
populations, it will be beneficial to collect higher-granularity
data from specific locations, such as high-density urban areas
where we observed larger effect estimates. Overall, we recommend
investigating data-quality related issues such as the above as a part
of (Barrett et al., 2013)data-driven exposome/epidemiological
research to ensure the robustness of the conclusions drawn.
Within the second-stage regression modelling, we chose to es-
timate the effect of pollutant profiles on math scores by restricting
to subpopulations defined by the first-stage trees. For example, in
multiple trees learned from the highly-populated urban popula-
tion, it was observed that higher manganese exposure in areas of
low isophorone was predictive of lower math scores. Therefore, in
the second-stage regression modelling, we limited to the subpop-
ulation with low isophorone exposure and then estimated the ef-
fect of manganese exposure, while adjusting for confounders. This
strategy provides interpretable measures of effect among the
exposed populations, but leads to models with different referent
groups and populations of varying size. Thus, it is possible that
some of the observed relationships between pollutant profiles and
math scores is due to these variations. However, a strength of our
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approach, is that any modelling strategy can be implemented
within the second stage. So, if researchers wanted to use the same
referent group across models for all identified pollutant profiles,
that could be easily implemented within the framework of this
approach.

In conclusion, our approach can be applied in similar ways to
other populations, exposures and outcomes for hypothesis gener-
ation and investigation of statistical interaction within the context
of high-dimensional pollutant data, such as those representing
environmental mixtures and multiple exposures.
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