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Abstract:	22 

Air	pollution	is	a	well-known	contributor	to	asthma.	Air	toxics	are	hazardous	air	pollutants	23 

that	cause	or	may	cause	serious	health	effects.	While	individual	air	toxics	have	been	24 

associated	with	asthma,	only	a	limited	number	of	studies	have	specifically	examined	25 

combinations	of	air	toxics	associated	with	the	disease.	We	geocoded	air	toxic	levels	from	26 

the	US	National	Air	Toxics	Assessment	(NATA)	to	residential	locations	for	participants	of	our	27 

AiRway	in	Asthma	(ARIA)	study.	We	then	applied	Data-driven	ExposurE	Profile	extraction	28 

(DEEP),	a	novel	machine	learning-based	method,	to	discover	combinations	of	early-life	air	29 

toxics	associated	with	current	use	of	daily	asthma	controller	medication,	lifetime	emergency	30 

department	visit	for	asthma,	and	lifetime	overnight	hospitalization	for	asthma.	We	31 

discovered	20	multi-air	toxic	combinations	and	18	single	air	toxics	associated	with	at	least	32 

one	outcome.	The	multi-air	toxic	combinations	included	those	containing	acrylic	acid,	33 

ethylidene	dichloride,	and	hydroquinone,	and	they	were	significantly	associated	with	34 

asthma	outcomes	with	odds	ratios	of	1.60	to	3.19.	Several	air	toxic	members	of	the	35 

combinations	would	not	have	been	identified	by	single	air	toxic	analyses,	supporting	the	use	36 

of	machine	learning-based	methods	designed	to	detect	combinatorial	effects.	Our	findings	37 

provide	knowledge	about	air	toxic	combinations	associated	with	childhood	asthma.38 
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Introduction	39 

Air	toxics	are	hazardous	air	pollutants	that	cause	or	may	cause	serious	health	effects 40 

(1).	They	are	well-established	detriments	to	human	respiratory	health,	especially	for	41 

children (2-8).	In	particular,	exposure	to	air	toxics	early	in	life	predisposes	children	to	42 

asthma,	one	of	the	most	prevalent	diseases	in	this	demographic	group.	Epidemiologic	43 

studies	have	linked	prenatal	and	early	life	exposure	to	air	toxics	with	childhood	wheeze,	44 

asthma,	and	altered	lung	function	(6-14).	 	45 

Although	air	toxics	are	generally	analyzed	and	regulated	as	individual	chemicals	(6),	we	46 

are	exposed	to	combinations	of	air	toxics	in	ambient	air.	The	specific	combinations	of	47 

individual	air	toxics	that	influence	childhood	asthma	have	not	been	studied	adequately.	48 

Assessing	the	respiratory	health	effects	of	multiple	air	toxics	is	challenging	for	several	49 

reasons	(7,	15).	First,	it	is	logistically	difficult	and	expensive	to	collect	detailed	individualized	50 

exposure	data	for	multiple	air	toxics	using	personal	or	local	monitoring.	Additionally,	there	51 

are	limited	statistical	methods	to	parse	the	effects	of	mixtures	where	individual	air	toxics	52 

may	only	contribute	slightly	to	an	adverse	outcome,	but	have	a	different	impact	in	53 

combination	with	other	air	toxics (15).	As	a	result,	few	studies	have	considered	54 

simultaneous	exposure	to	air	toxic	mixtures	and	their	associations	with	children’s	health,	55 

including	asthma	(8,	15-17).	 	56 
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Several	studies	linking	air	toxic	mixtures	and	health	outcomes,	as	well	as	a	prior	review	57 

of	57	studies	that	examined	air	pollutants	and	their	health	effects,	reached	no	consensus	on	58 

the	ideal	methods	for	multi-pollutant	analyses (6,	7,	15,	16,	18).	A	key	limitation	of	the	59 

studies	reviewed	was	that	most	metrics	assumed	pure	additivity	of	the	effects	of	multiple	60 

air	toxics,	without	consideration	of	synergistic	and/or	antagonistic	interactions.	Due	to	these	61 

challenges,	air	toxic	combinations	that	collectively	influence	childhood	asthma	remain	62 

suboptimally	characterized.	Furthermore,	identifying	air	toxic	combinations	associated	with	63 

health	outcomes	is	also	difficult	due	to	the	exponentially	large	number	of	combination	64 

subsets	in	a	set	of	air	toxics,	i.e.,	2N-1	combinations	in	a	set	of	N	air	toxics.	Conventional	65 

statistical	methods (19-24)	and	feature	importance	assessment	using	machine	learning	66 

algorithms (16,	25-27)	have	not	been	effective	for	this	task	since	they	generally	assess	the	67 

association	of	air	toxics	individually.	68 

In	this	study,	we	hypothesized	that	exposure	to	combinations	of	air	toxics	during	early	69 

life	is	associated	with	asthma	outcomes	in	later	childhood.	These	outcomes	included	current	70 

need	for	daily	asthma	controller	medication,	lifetime	emergency	room	visit	for	asthma,	and	71 

lifetime	overnight	hospitalization	for	asthma	(Figure	1).	Asthma-related	medication	use,	72 

emergency	room	visits,	and	hospitalizations	are	frequently	studied	asthma	outcomes	that	73 

reflect	asthma	severity,	control,	and	healthcare	utilization (28-30).	While	some	studies	have	74 

reported	associations	between	particular	air	toxics	and	these	asthma	subphenotypes	(9,	11,	75 
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12),	none	addressed	our	goal	to	identify	combinations	of	air	toxics	from	a	large	national	76 

assessment	of	air	toxics	associated	with	these	asthma	outcomes.	We	tested	our	hypothesis	77 

by	geocoding	levels	of	125	air	toxic	from	the	US	Environmental	Protection	Agency’s	(EPA)	78 

National	Air	Toxic	Assessment	(NATA)	(31),	one	of	the	richest	sources	of	multi-air	toxic	79 

profiling	across	the	US,	to	the	residential	addresses	of	children	with	asthma	from	our	Airway	80 

in	Asthma	(ARIA)	study	(32)	to	map	each	child’s	exposure	to	air	toxics	during	the	first	years	81 

of	life.	We	addressed	the	challenges	of	combinatorial	air	toxic	analysis	by	applying	a	82 

machine	learning-based	algorithm	called	Data-driven	ExposurE	Profile	extraction	(DEEP),	83 

which,	to	the	best	of	our	knowledge,	is	a	novel	method	for	this	problem.	DEEP	uses	the	84 

high-performing	eXtreme	Gradient	Boosting	(XGBoost)	(33)	algorithm	to	identify	air	toxic	85 

combinations	associated	with	health	outcomes.	The	combinations	identified	using	XGBoost	86 

were	then	adjusted	for	potential	confounders,	including	age,	gender,	race/ethnicity,	and	87 

family	income,	to	identify	early-life	multi-air	toxic	combinations,	statistical	interactions	88 

within	combinations,	and	demographic	profiles	associated	with	adverse	asthma	outcomes	in	89 

later	childhood.	Our	approach	identified	several	combinations	of	air	toxics	associated	with	90 

asthma.	 	91 

	92 

Results	93 

	94 
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Characteristics	of	the	study	cohort	95 

Table	1	shows	the	characteristics	of	the	Airway	in	Asthma	(ARIA)	study	(32)	participants	96 

with	asthma	examined	in	this	study.	These	151	children	with	mild	to	severe	persistent	97 

asthma	were	recruited	from	the	Mount	Sinai	Health	System,	New	York,	NY	with	informed	98 

consent	from	their	parent/guardian	via	an	IRB-approved	protocol.	Participants	had	a	mean	99 

age	of	12	years	(standard	deviation	3.2	years)	at	the	time	of	assessment,	and	were	of	100 

diverse	self-identified	racial/ethnic	backgrounds	(Table	1).	Their	asthma	was	generally	not	101 

well-controlled,	with	a	mean	score	on	the	Asthma	Control	Test	(ACT)(34)	of	16.8	(maximum	102 

value	25	representing	optimal	control),	and	96%	of	the	cohort	reporting	regular	use	of	a	103 

short-acting	beta	agonist	rescue	inhaler.	 	104 

Children	who	used	daily	asthma	controller	medication	(n=84,	56%)	were	younger	than	105 

those	who	did	not	(n=65;	p=0.048).	Inhaled	corticosteroids	(ICS)	were	used	most	frequently,	106 

both	independently	and	in	combination	with	long-acting	beta	agonist	(LABA).	Children	who	107 

had	at	least	one	lifetime	emergency	room	visit	for	asthma	(n=103,	68%)	were	more	likely	to	108 

self-identify	as	Black	or	Latino,	had	significantly	lower	ACT	scores	than	their	counterparts	109 

who	had	never	required	an	emergency	department	visit	for	asthma,	and	were	more	likely	to	110 

be	taking	combination	ICS/LABA	as	their	daily	asthma	controller	medication.	Children	who	111 

had	been	hospitalized	overnight	for	asthma	in	their	lifetime	(n=51,	34%)	had	significantly	112 

lower	forced	expiratory	volume	in	1	second	percent	predicted	(FEV1%)	on	spirometry,	and	113 
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higher	rates	of	ICS/LABA	and	leukotriene	receptor	antagonist	for	daily	asthma	treatment	114 

compared	to	the	participants	with	asthma	who	had	never	been	hospitalized	overnight	for	115 

asthma.	116 

	117 

Air	toxic	characteristics	 	118 

Ambient	annual	average	concentrations	for	over	a	hundred	toxics	based	on	emissions	119 

inventories	and	computer	simulation	models	are	publicly	available	for	each	US	census	tract	120 

in	the	EPA’s	NATA	database (31).	We	mapped	the	available	toxic	levels	to	the	residential	ZIP	121 

code	for	each	child	in	our	cohort.	Ninety-four	zip	codes	spanning	443	square	miles	across	122 

New	York,	New	Jersey,	and	Connecticut	were	represented	in	this	cohort.	We	used	the	123 

closest	calendar	year	of	NATA	data	available	subsequent	to	a	child’s	birth	date.	We	retained	124 

only	the	air	toxics	whose	levels	were	available	for	all	the	participants	in	the	mapped	125 

datasets,	yielding	125	air	toxics	for	analysis.	126 

	 	127 

DEEP-enabled	identification	of	combinations	of	air	toxics	associated	with	childhood	128 

asthma	129 

We	then	applied	DEEP	to	identify	air	toxic	combinations	associated	with	each	of	the	130 

three	childhood	asthma	outcomes,	namely	the	need	for	daily	asthma	controller	medication,	131 

lifetime	emergency	room	visit	for	asthma,	and	lifetime	overnight	hospitalization	for	asthma.	132 
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In	the	first	analytical	stage	of	DEEP	(detailed	in	Methods),	for	each	outcome,	the	full	dataset	133 

was	randomly	split	100	times	into	training	and	test	sets	in	an	80:20	ratio.	For	each	split,	an	134 

XGBoost	model	consisting	of	100	decision	trees	was	learned	from	the	training	set	and	135 

evaluated	on	the	test	set	in	terms	of	the	Area	Under	the	ROC	Curve	(AUC	score)	(35).	 	136 

In	the	second	analytical	stage	of	DEEP,	we	analysed	the	combinations	of	toxics	from	the	137 

XGBoost	models,	identified	as	root-to-leaf	paths	in	the	constituent	decision	trees,	for	each	138 

outcome.	Note	that	in	some	cases,	a	combination	may	consist	of	only	one	air	toxic	if	it	is	139 

sufficient	to	predict	the	outcome	under	consideration	for	a	subset	of	the	cohort,	thus	giving	140 

DEEP	flexibility	in	discovery.	Also,	in	cases	of	multiple	air	toxics	in	these	combinations,	their	141 

sequence	of	appearance	on	the	path	also	indicates	their	relative	order	of	relevance	to	the	142 

outcome	being	predicted.	This	is	because	variables	closer	to	the	root	of	a	decision	tree	have	143 

higher	predictive	power	than	those	closer	to	the	leaves.	144 

Next,	the	frequency	of	each	combination	was	calculated	as	the	number	of	models	(out	145 

of	100)	where	it	was	included	in	at	least	one	of	the	constituent	trees.	Candidate	146 

combinations	were	then	identified	as	those	with	a	frequency	of	at	least	ten.	These	147 

combinations	were	then	used	in	multivariable	regression	models	to	test	their	association	148 

with	the	asthma	outcome	of	interest,	while	adjusting	for	age,	gender,	race/ethnicity,	and	149 

income.	 	150 
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689	profiles	of	air	toxics	across	all	the	asthma	outcomes	were	discovered	after	the	first	151 

XGBoost	stage	of	DEEP.	These	sets	included	both	individual	air	toxics	and	their	combinations.	152 

359	of	these	sets	were	then	found	to	be	significantly	associated	(𝑃 ≤0.05)	with	the	153 

respective	outcome	in	the	second	stage	of	DEEP.	After	multiple	hypothesis	correction	by	the	154 

Benjamini-Hochberg	procedure	(36),	273	air	toxic	profiles	were	found	to	be	significantly	155 

associated	(FDR≤0.05)	with	at	least	one	of	the	three	outcomes.	Our	goal	was	to	identify	air	156 

toxic	combinations	whose	increased	levels	are	associated	with	adverse	asthma	outcomes.	157 

Therefore,	among	the	significantly	associated	combinations,	we	focused	on	groups	that	158 

included	air	toxics	with	levels	higher	than	threshold.	Among	these	finally	determined	159 

combinations,	there	were	18	with	only	one	air	toxic	each	(Figure	2),	and	20	multi-air	toxic	160 

combinations	(Figure	3).	161 

	162 

Air	toxic	combinations	associated	with	asthma	outcomes	163 

Twenty	multi-air	toxic	combinations	and	eighteen	individual	air	toxics	were	found	to	be	164 

significantly	associated	with	at	least	one	of	the	three	asthma	outcomes.	The	medians	and	165 

interquartile	ranges	of	the	exposure	levels	of	the	34	air	toxics	included	in	these	associations	166 

are	shown	in	Table	2.	167 

Higher	levels	of	seventeen	individual	air	toxics	were	significantly	associated	with	worse	168 

asthma	outcomes	(Figure	2).	Odds	ratios	(ORs)	for	these	associations	ranged	from	1.56	to	169 
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2.65.	Several	of	the	identified	toxics	are	established	risk	factors	for	childhood	asthma,	170 

especially	the	chemicals	previously	categorized	as	halogenated,	ketones	and	ethers	(8,	171 

37-39).	Among	these,	the	air	toxics	most	associated	with	the	outcomes	were	acrylic	acid	172 

(OR=2.10),	mercury	compounds	(OR=2.65),	and	ethyl	chloride	(OR=1.87)	respectively.	173 

Acetamide,	pentachlorophenol,	and	polychlorinated	biphenyls	were	associated	with	more	174 

than	one	asthma	outcome.	175 

A	major	strength	of	DEEP	is	its	ability	to	identify	multi-air	toxic	combinations	associated	176 

with	health	outcomes.	Indeed,	here	DEEP	revealed	significant	associations	between	higher	177 

exposure	to	20	multi-air	toxic	combinations	and	the	three	asthma	outcomes	of	interest	178 

(Figure	3).	Among	these,	19	combinations	included	two	air	toxics	and	one	included	three.	179 

The	associations	of	these	combinations	were	generally	stronger	than	those	of	the	individual	180 

air	toxics,	with	ORs	ranging	from	1.60	to	3.19	(Figure	3).	 	181 

	 Notably,	acrylic	acid	was	not	only	the	individual	air	toxic	most	strongly	associated	with	182 

daily	controller	medication	(Figure	2),	it	was	the	first	(i.e.	primary)	member	of	7	of	the	9	183 

multi-air	toxic	combinations	associated	with	this	outcome	(Figure	3).	Acrylic	acid	also	184 

appeared	in	3	of	the	other	11	combinations	associated	with	emergency	room	visit	and	185 

overnight	hospitalization	for	asthma	(Figure	3),	indicating	that	it	is	a	major	contributor	to	186 

adverse	asthma	outcomes	among	children.	 	187 
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Three	air	toxic	combinations	were	associated	with	lifetime	emergency	room	visit	for	188 

asthma,	all	with	an	OR	of	over	2	(Figure	3).	Acetaldehyde,	acrylamide,	and	acrylic	acid	were	189 

the	primary	exposures	in	these	combinations,	despite	the	fact	they	were	not	individually	190 

significantly	associated	with	the	outcome.	Several	other	air	toxics	in	these	combinations,	191 

namely	carbon	disulfide	and	hydroquinone,	were	also	not	individually	associated	with	this	192 

outcome.	These	findings	highlight	the	main	strength	of	DEEP,	namely	its	ability	to	identify	193 

significant	multi-air	toxic	combinations,	whose	constituent	air	toxics	may	not	be	individually	194 

associated	with	the	health	outcome	of	interest.	195 

Among	the	eight	air	toxic	combinations	associated	with	lifetime	overnight	196 

hospitalization	for	asthma,	1,4-dioxane,	carbonyl	sulfide,	ethylidene	dichloride,	hydrochloric	197 

acid,	and	hydroquinone	were	the	primary	exposures	(Figure	3).	Both	ethylidene	dichloride	198 

and	hydroquinone	appeared	in	three	of	these	eight	combinations,	indicating	that	these	two	199 

chemicals	may	play	a	role	in	the	development	of	poor	asthma	outcomes	among	children.	200 

Most	other	air	toxics	in	these	combinations	(Figure	3)	were	largely	not	individually	201 

associated	with	this	outcome	(Figure	2),	again	supporting	DEEP’s	ability	to	identify	multi-air	202 

toxic	combinations	that	may	not	be	inferred	from	single	air	toxic	associations.	 	203 

	204 

Effect	sizes	of	multi-air	toxic	combinations	may	not	be	evident	from	the	individual	205 

associations	of	their	members	206 
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Some	air	toxics	had	relatively	low	effect	sizes	when	assessed	individually	(Figure	2)	207 

compared	to	the	larger	ORs	from	combination	analyses	(Figure	3).	For	example,	acrylic	acid	208 

was	associated	with	daily	controller	medication	with	an	OR	of	2.10	as	an	individual	air	toxic	209 

(Figure	2),	but	the	ORs	of	its	combinations	with	dimethyl	phthalate,	1,1,1-trichloroethane,	210 

ethyl	chloride,	acetophenone,	and	cobalt	were	higher	(OR	2.16	to	3.19;	Figure	3).	Also,	none	211 

of	these	five	air	toxics	were	individually	associated	with	the	outcome.	Similarly,	212 

hexachlorobenzene	was	associated	with	daily	controller	medication	with	an	OR	of	2.03	213 

(Figure	2),	while	simultaneous	exposure	to	the	combination	of	hexachlorobenzene	and	214 

dimethyl	phthalate	identified	by	DEEP	had	an	OR	of	2.96	(Figure	3).	This	was	despite	the	fact	215 

that	there	was	no	significant	individual	association	between	dimethyl	phthalate	and	the	216 

outcome.	For	the	pair	of	toluene	and	phosphorus,	neither	air	toxic	was	individually	217 

associated	with	daily	controller	medication	(Figure	2),	but	their	combination	was	associated	218 

with	the	outcome	with	an	OR	of	1.81	(Figure	3).	219 

Similar	cases	of	combinatorial	effects	were	also	seen	for	lifetime	emergency	room	visit	220 

for	asthma.	For	example,	simultaneous	exposure	to	polychlorinated	biphenyl,	acetaldehyde	221 

and	carbon	disulfide	had	3.10-fold	odds	of	the	outcome	(Figure	3),	while	polychlorinated	222 

biphenyl’s	individual	effect	size	was	substantially	lower	(OR=1.72;	Figure	2).	Similarly,	the	223 

combination	of	acrylic	acid	and	hydroquinone	was	significantly	associated	with	emergency	224 
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room	visit	with	an	OR	of	2.73	(Figure	3),	but	neither	was	associated	with	the	outcome	225 

individually	(Figure	2).	226 

We	observed	similar	results	for	multi-air	toxic	combinations	and	lifetime	overnight	227 

hospitalization	for	asthma.	Exposure	to	hydroquinone	was	individually	associated	with	this	228 

outcome	with	an	OR	of	1.79	(Figure	2),	but	in	combination	with	ethylidene	dichloride,	the	229 

association	was	stronger	(OR=2.03;	Figure	3).	Similarly,	carbonyl	sulfide	was	not	individually	230 

associated	with	this	outcome	(Figure	2),	but	it	was	the	primary	member	in	two	of	the	231 

multi-air	toxic	combinations	found	to	be	associated	with	OH	(Figure	3).	232 

In	summary,	the	above	comparison	of	the	effect	sizes	of	the	individual	(Figure	2)	and	233 

multi-	(Figure	3)	air	toxic	associations	demonstrated	that	combinations	of	air	toxics	had	234 

effects	that	were	not	fully	explained	by	simply	adding	together	the	individual	effects	from	235 

their	constituents.	Overall,	DEEP	identified	34	air	toxics	associated	with	the	asthma	236 

outcomes	(Table	2),	including	16	air	toxics	with	significant	effects	only	as	members	of	237 

combinations.	238 

	239 

Statistical	Interactions	among	Members	of	Air	Toxic	Combinations	240 

To	assess	potential	synergy	between	members	of	air	toxic	combinations	associated	241 

with	asthma	outcomes,	we	conducted	statistical	tests	for	interactions.	Significant	statistical	242 

interactions	detected	between	air	toxic	members	within	the	combinations	are	shown	in	243 
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Table	3.	Acrylic	acid	was	the	primary	air	toxic	(i.e.	primary	branch	point	in	the	decision	tree)	244 

of	all	the	combinations	with	significant	statistical	interactions.	While	other	combinations	did	245 

not	reveal	significant	interactions,	such	interactions	remain	possible	given	the	limitations	of	246 

statistical	detection	of	interactions.	Directed	experimental	work	could	be	undertaken	to	test	247 

for	additional	interactions.	248 

	249 

Representative	Air	Toxic	Combinations	and	Demographic	Risk	Factors	250 

Finally,	one	of	the	advantages	of	DEEP	is	that	the	trees	constituting	its	underlying	251 

XGBoost	models	can	be	visualized	and	interpreted,	which	is	difficult	to	do	for	several	other	252 

machine	learning	methods.	However,	since	it	is	difficult	to	simultaneously	depict	all	the	253 

trees	inferred	by	DEEP,	we	visualized	sample	trees	that	contained	the	most	strongly	254 

associated	multi-air	toxic	combination	for	each	childhood	asthma	outcome.	Sample	decision	255 

trees	inferred	by	DEEP	for	each	of	the	outcomes	are	shown	in	Figures	4,	5,	and	6	256 

respectively.	To	provide	an	additional	level	of	interpretation,	we	also	compared	the	257 

demographic	characteristics	(age,	sex,	race/ethnicity,	and	family	income)	of	children	258 

exposed	to	each	of	these	combinations	to	those	of	children	who	were	not	exposed	in	Tables	259 

4,	5,	and	6.	Differences	could	suggest	demographic	risk	factors	that	may	increase	a	child’s	260 

exposure	to	these	multi-air	toxic	combinations.	261 
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Acrylic	acid	and	cobalt	compounds	was	the	air	toxic	combination	associated	with	daily	262 

controller	medication	use	with	the	highest	odds	ratio	of	3.19	(Figure	3,	Figure	4).	Children	263 

exposed	to	this	combination	were	older	compared	to	those	who	were	not	(p=0.02;	Table	4).	 	264 

Acetaldehyde,	carbon	disulphide,	and	polychlorinated	biphenyls	was	the	air	toxic	265 

combination	most	strongly	associated	with	lifetime	emergency	room	visit	for	asthma	266 

(OR=3.10;	Figure	3,	Figure	5).	Children	exposed	to	this	combination	were	younger	267 

(p=5.34x10-8;	Table	5)	and	had	lower	family	income	than	those	who	were	not	exposed	268 

(p=0.019;	Table	5).	Exposed	children	were	also	less	likely	to	be	White	(p=0.0046;	Table	5).	269 

These	observations	point	to	social	disparities	among	these	groups	of	children.	270 

The	most	strongly	associated	combination	for	overnight	hospitalization	was	271 

hydroquinone	and	ethylidene	dichloride	(OR=2.03;	Figure	3,	Figure	6).	Children	exposed	to	272 

this	combination	were	younger	(p=0.00218;	Table	6)	and	had	lower	family	incomes	273 

(p=8.26x10-5;	Table	6)	than	those	who	were	not	exposed.	 	274 

	275 

Discussion	276 

Our	application	of	a	novel	machine	learning-driven	algorithm	called	DEEP	to	a	cohort	of	277 

mild	to	severe	asthmatic	children	identified	several	individual	and	combinations	of	air	toxics,	278 

to	which	increased	exposure	during	early-life	was associated	with	adverse	asthma	outcomes	279 

in	later	childhood.	In	particular,	due	to	a	unique	ability	of	DEEP	to	examine	air	toxic	280 
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combinations,	we	identified	16	air	toxics	that	were	only	found	to	be	significantly	associated	281 

with	childhood	asthma	outcomes	in	combination	with	other	air	toxics.	 	282 

Many	air	toxics	in	the	identified	combinations,	such	as	carbonyl	sulfide,	carbon	283 

disulfide,	ethyl	chloride,	and	ethylidene	chloride,	are	similar	in	structure	and	have	analogous	284 

formation,	production,	chemical	fate,	and	chemical	transport	properties	(40).	Ten	air	toxics	285 

in	the	combinations	contained	chlorine,	three	included	heavy	metal	compounds,	and	many	286 

were	acidic	chemicals.	This	aligns	with	prior	literature	implicating	acidic	chemicals,	287 

chlorinated	chemicals,	and	heavy	metal	compounds	as	risk	factors	for	asthma	and	asthma	288 

severity	(8,	41-44).	However,	an	understanding	of	the	biological	mechanisms	through	which	289 

these	combinations	of	air	toxics	can	jointly	affect	respiratory	health	and	asthma	merits	290 

further	study.	 	291 

Among	the	air	toxics	individually	associated	with	asthma	outcomes	(Figure	2),	292 

triethylamine	was	associated	with	increased	overnight	hospitalizations	for	asthma.	293 

Triethylamine	is	a	clear,	colorless	liquid	used	in	waterproofing	and	as	a	catalyst,	corrosion	294 

inhibitor,	and	propellant (45).	It	is	a	respiratory	irritant,	to	which	chronic	exposure	even	at	295 

low	levels	can	inhibit	the	function	of	organic	cationic	transporters,	thus	preventing	efficient	296 

uptake	of	inhaled	bronchodilators	used	to	control	acute	asthma	symptoms (46,	47).	297 

Acrylic	acid	was	individually	associated	with	daily	controller	medication	(Figure	2)	and	298 

appeared	as	a	member	of	at	least	one	combination	associated	with	all	three	outcomes	299 
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(Figure	3).	Furthermore,	it	was	found	to	interact	with	other	member	air	toxics	of	three	300 

combinations	(Table	3).	Acrylic	acid	is	used	in	the	manufacture	of	adhesives,	elastomers,	301 

plastics,	coatings,	as	well	as	floor	paints	and	polishers	(48).	Literature	has	suggested	that	the	302 

presence	of	water-soluble	cobalt	complexes	increases	the	conversion	of	polyacrylic	acid	into	303 

acrylic	acid,	which	is	more	biologically	viable.	Acrylic	acid	also	reacts	with	cobalt	complexes	304 

to	produce	organocobalt	complexes	(49).	Additionally,	hydroquinone	acts	as	a	stabilizer	to	305 

prevent	the	polymerization	of	acrylic	acid,	which	keeps	the	latter	in	a	form	with	a	lower	306 

molecular	weight	that	is	more	biologically	viable	(50,	51).	Our	results,	including	evidence	of	307 

statistical	interactions	between	acrylic	acid	and	other	chemical	compounds,	suggest	further	308 

investigation	of	mechanisms	for	acrylic	acid’s	associations	with	adverse	childhood	asthma	309 

outcomes.	310 

Ethyl	chloride,	also	known	as	chloroethane	(C2H5Cl),	and	ethylidene	dichloride	(C2H4Cl2)	311 

are	both	chlorinated	hydrocarbons.	Ethyl	chloride	is	used	as	a	thickening	agent	and	binder	in	312 

paints	and	cosmetics,	and	as	a	refrigerant,	aerosol	spray	propellant,	anesthetic,	and	blowing	313 

agent	for	foam	packaging	(52).	We	found	ethyl	chloride	to	be	associated	with	asthma	314 

outcomes,	both	as	an	individual	air	toxic	(overnight	hospitalizations;	Figure	2)	and	as	a	315 

member	of	multi-air	toxic	combinations	(daily	controller	medication;	Figure	3).	Ethylidene	316 

dichloride,	which	is	mainly	used	as	a	solvent	for	plastics,	oils	and	fats,	and	as	a	degreaser	317 

and	fumigant	in	insecticide	sprays (53),	appeared	as	a	member	of	several	combinations	318 
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associated	with	lifetime	overnight	hospitalization	for	asthma	(Figure	3).	Both	these	319 

compounds	are	well-known	members	of	the	chloroethanes	family,	which	is	comprised	of	320 

liposoluble	chemicals	that	can	be	taken	up	by	the	lipoprotein	within	the	alveolar	film	layer	321 

(AFL) (54).	AFL	disruption	is	observed	in	multiple	pulmonary	diseases,	including	acute	322 

respiratory	distress	syndrome,	infant	respiratory	distress	syndrome,	emphysema,	chronic	323 

obstructive	pulmonary	disease,	asthma,	chronic	bronchitis,	pneumonia,	pulmonary	324 

infections,	and	idiopathic	pulmonary	fibrosis (55).	Thus,	chronic	exposure	to	ethyl	chloride	325 

and	ethylidene	dichloride	may	lead	to	dysfunction	in	the	AFL,	which	may	contribute	to	326 

worse	asthma	control.	 	327 

Hydroquinone,	a	commonly	studied	air	toxic,	was	also	identified	in	our	analyses.	While	328 

exposure	to	higher	levels	of	hydroquinone	alone	was	not	associated	with	overnight	329 

hospitalization	for	asthma,	DEEP	identified	it	as	a	member	of	several	multi-air	toxic	330 

combinations	associated	with	this	outcome	(Figure	3).	Hydroquinone	is	commonly	found	in	331 

the	indoor	environment, and	exposure	to	it	has	been	associated	with	airway	332 

hypersensitivity	(56-59).	Hydroquinone	is	widely	seen	in	cosmetic	and	health	products,	333 

including	skin	creams	(60).	It	is	thought	to	prevent	the	polymerization	of	acrylic	acid,	methyl	334 

methacrylate,	cyanoacrylate,	and	other	monomers	that	are	susceptible	to	radical-initiated	335 

polymerization,	thus	allowing	them	to	persist	in	their	original	form (50,	51).	This	suggests	a	336 

mechanism	through	which	the	identified	synergistic	combination	of	hydroquinone	with	337 



 20 

acrylic	acid	(emergency	room	visit;	Figure	3)	is	associated	with	adverse	asthma	outcomes.	338 

Although	our	analysis	did	not	find	a	statistically	significant	interaction	between	339 

hydroquinone	and	ethylidene	dichloride,	potentially	due	to	lower	exposure	levels,	340 

hydroquinone	is	industrially	added	to	shelf	ethylidene	dichloride	as	a	stabilizer	(61).	This	341 

suggests	that	in	the	presence	of	hydroquinone,	ethylidene	dichloride	is	less	likely	to	react	342 

with	other	chemicals	in	the	environment,	and	thus	retain	its	toxic	form	longer	(similar	to	343 

acrylic	acid).	Thus,	it	is	still	possible	that	hydroquinone	and	ethylidene	dichloride	may	act	344 

synergistically,	but	this	needs	to	be	investigated	in	future	studies.	345 

	 While	our	study	has	advanced	the	identification	of	air	toxic	combinations	associated	346 

with	childhood	asthma	outcomes,	it	also	has	limitations.	We	used	the	NATA	national	model	347 

(31)	to	estimate	exposures	rather	than	personal	sampling	or	local	monitors.	Collecting	348 

personal	or	locally	monitored	measures	for	125	air	toxics	at	each	cohort	participant’s	349 

residence	would	be	logistically	and	financially	challenging.	Given	this,	NATA	is	commonly	350 

used	for	estimating	ambient	exposures,	since	it	is	a	well-validated	deterministic	dispersion	351 

chemical	transportation	model	created	by	the	EPA	that	accounts	for	sources	included	in	the	352 

NATA	emission	inventory	(31).	NATA	estimates	of	a	given	air	toxic	may	under-report	a	353 

personally	or	locally	monitored	value,	since	the	latter	may	include	emissions	from	indoor	354 

and	undocumented	sources	not	in	the	EPA’s	inventory.	For	instance,	one	study	found	that	355 

higher	personally	monitored	benzene	concentrations	relative	to	NATA-predicted	values	356 
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were	likely	due,	at	least	in	part,	to	indoor	sources	not	included	in	the	EPA’s	inventory (62).	357 

Other	studies	also	found	discrepancies	between	NATA	estimates	and	monitored	chemical	358 

concentrations,	due	again,	in	part,	to	local	or	indoor	sources	(63,	64).	 	359 

Despite	the	above	limitations,	using	NATA	as	the	primary	source	of	exposure	estimates	360 

has	several	strengths	over	locally	monitored	values.	First,	NATA	has	a	finer	geographical	361 

prediction	resolution	and	spread	than	currently	available	monitoring	sites	(31).	This	enabled	362 

us	to	include	participants	in	our	study	that	may	not	have	had	a	monitoring	site	close	to	their	363 

residence.	Second,	NATA	data	are	generated	from	an	advanced	chemical	transportation	364 

model	that	aggregates	exposure	over	a	long	period,	and	thus	is	able	to	capture	transient	365 

exposures.	Also,	several	factors	potentially	affecting	air	toxic	estimates,	such	as	seasonality,	366 

ambient	temperature,	meteorology,	precipitation,	and	solar	radiation,	have	already	been	367 

incorporated	into	NATA’s	model	(31).	This	level	of	comprehensive	modelling	is	typically	not	368 

available	from	personal	or	local	monitoring.	Finally,	local	measurements	may	also	have	369 

detection	and	quantification	limits,	while	NATA	is	able	to	estimate	air	toxics	even	at	lower	370 

levels	and	over	a	longer	period	of	time.	Due	to	these	strengths,	we	chose	to	study	NATA	371 

data	in	this	work.	 	372 

We	recognize	that	our	results	do	not	provide	evidence	of	a	causal	effect	of	any	373 

chemical	on	adverse	childhood	asthma	outcomes,	which	will	need	further	investigation.	374 

Additionally,	our	geocoding	was	based	on	a	single	zip	code	for	each	participant	so	would	not	375 
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account	for	potentially	dynamic	exposures	due	to	residential	moves.	Last,	our	study	376 

participants	were	all	from	the	New	York,	New	Jersey,	and	Connecticut	tri-state	area.	Thus,	377 

our	findings	may	not	generalize	to	other	US	regions	or	parts	of	the	world.	Future	studies	378 

could	examine	combinations	from	other	geographical	regions	and/or	utilize	direct	air	379 

sampling	to	confirm	the	combinations	identified	in	this	study.	380 

	 In	conclusion,	this	study	demonstrated	innovative	use	of	data	science	methods	and	381 

data	sources	to	identify	specific	combinations	of	early-life	air	toxic	exposures	associated	382 

with	later	childhood	asthma	outcomes.	Our	study	suggests	that	chemical	pollutants	should	383 

be	closely	monitored	together	in	combination,	especially	for	locations	with	vulnerable	384 

populations.	 	385 

	386 

Materials	and	Methods	387 

An	overview	of	the	study	approach	is	shown	in	Figure	1.	388 

	389 

Study	Population	390 

The	study	population	included	children	with	asthma	from	the	AiRway	In	Asthma	(ARIA)	391 

study,	a	cohort	recruited	from	the	Mount	Sinai	Health	System,	New	York,	NY	(32).	The	study	392 

was	approved	by	the	Mount	Sinai	Institutional	Review	Board.	Children	with	asthma	had	mild	393 

to	severe	persistent	asthma	according	to	National	Asthma	Education	and	Prevention	394 
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Program	(NAEPP)/National	Heart	Lung	Blood	Institute	(NHLBI)	Expert	Panel	Report	3	(EPR3)	395 

criteria	(65)	and	positive	bronchodilator	response	on	spirometry	or	methacholine	challenge	396 

with	provocative	challenge	causing	a	20%	fall	in	forced	expiratory	volume	(PC20)	<	12.5	397 

mg/ml.	Phenotyping	for	all	participants	included	detailed	questionnaires	about	398 

asthma-related	symptoms,	medication	and	healthcare	use,	and	pre	and	post-	399 

bronchodilator	spirometry	following	American	Thoracic	Society	guidelines	(65).	 	400 

	401 

Asthma	Outcomes	402 

We	focused	on	the	following	three	self-reported	asthma-related	outcomes:	(1)	current	use	403 

of	prescribed	daily	asthma	controller	medication	(daily	controller	medication),	(2)	at	least	404 

one	emergency	department	visit	for	asthma	during	subject’s	lifetime	(emergency	room	visit),	405 

and	(3)	at	least	one	overnight	hospitalization	for	asthma	during	subject’s	lifetime	(overnight	406 

hospitalization).	407 

	408 

Air	Toxic	Exposures	409 

The	air	toxic	exposure	profile	of	each	participant	was	derived	from	EPA's	National	Air	Toxics	410 

Assessment	(NATA) (31).	NATA	estimates	the	annual	ambient	concentrations	of	over	a	411 

hundred	air	toxics	at	each	census	tract	in	the	United	States	based	on	emissions	inventories	412 

and	advanced	computer	simulation	models	(31).	Seasonality	of	air	toxics,	ambient	413 



 24 

temperature,	meteorology,	precipitation	and	solar	radiation	are	incorporated	into	NATA’s	414 

model	(31).	415 

NATA	data	are	available	for	1996,	1999,	2002,	2005,	2011,	and	2014	(27),	and	children	416 

in	this	study	were	born	between	1997	and	2012.	To	assign	the	most	representative	ambient	417 

air	toxic	exposure	levels	to	each	participant,	we	mapped	the	residential	ZIP	code	of	each	418 

child	in	our	cohort	to	the	geometric	centroid	of	the	closest	census	tract	(31).	We	then	used	419 

the	annual	exposure	data	for	that	tract	from	the	NATA	release	closest	in	time	following	the	420 

child’s	birth	year.	This	choice	of	year	closest	to	birth	was	based	on	prior	evidence	that	421 

early-life	exposure	to	air	pollution	is	associated	with	childhood	asthma	outcomes	(66-68).	422 

Finally,	we	retained	the	125	air	toxics	that	had	data	available,	i.e.,	no	missing	data,	for	all	423 

participants	in	the	final	dataset (15,	69).	 	424 

	425 

Covariates	426 

We	included	age,	sex,	race/ethnicity,	and	family	income	as	covariates	in	multivariable	427 

regression	models	based	on	considerations	that	these	variables	could	confound	associations	428 

between	air	toxic	levels	and	asthma	outcomes.	Since	the	questionnaire	completed	by	ARIA	429 

participants	did	not	include	queries	about	family	income,	we	used	the	average	income	of	430 

each	participant’s	residential	ZIP	code	obtained	from	US	Census	Business	Patterns	data	(70)	431 

as	a	surrogate	for	this	variable.	432 
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	433 

Data-driven	ExposurE	Profile	extraction	(DEEP)	434 

To	identify	multi-air	toxic	exposure	profiles	associated	with	asthma	outcomes,	we	435 

developed	a	data-driven	method	called	Data-driven	ExposurE	Profile	extraction	(DEEP)	436 

(Figure	1).	DEEP	is	inspired	by	a	simpler	method	that	we	previously	used	to	identify	multi-air	437 

toxic	combinations	associated	with	children’s	cognitive	skills	(15).	 	438 

In	the	first	stage	of	DEEP,	exposure	combinations	are	identified	using	eXtreme	Gradient	439 

Boosting	(XGBoost)	(33),	an	algorithm	that	uses	an	ensemble	method	to	iteratively	learn	440 

decision	trees	and	generally	performs	well	at	prediction	tasks.	XGBoost	generally	yields	441 

strong	predictive	power	(71,	72)	due	to	its	use	of	multiple	optimization	methods,	including	442 

regularization	and	gradient	boosting,	which	reduces	overfitting	of	models	to	training	data.	443 

Specifically,	the	full	exposure	dataset	was	randomly	split	100	times	into	training	and	test	444 

sets	in	an	80:20	ratio.	For	each	split,	an	XGBoost	model	consisting	of	100	decision	trees	was	445 

learned	from	the	training	set	to	predict	the	outcome	under	consideration.	This	model	was	446 

then	applied	to	and	evaluated	on	the	corresponding	test	set	in	terms	of	the	Area	Under	the	447 

ROC	curve	(AUC	score(35)).	The	overall	predictability	of	the	target	outcome	was	evaluated	448 

in	terms	of	the	average	value	of	the	AUC	scores	across	the	100	training/test	splits.	449 

The	decision	trees	constituting	each	XGBoost	model	contain	internal	decision	nodes,	450 

edges,	and	leaf	nodes	to	represent	how	the	value	of	an	outcome	could	be	predicted	based	451 
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on	air	toxic	levels.	Figures	4-6	show	several	trees	derived	in	the	current	work.	Each	decision	452 

node	in	these	trees	contains	an	air	toxic	and	a	threshold	value	for	its	level.	It	is	also	453 

connected	by	two	edges	representing	the	decisions	made	depending	on	whether	an	454 

individual’s	exposure	was	higher	or	lower	than	the	threshold.	Each	of	these	edges	is	455 

connected	to	either	the	next	decision	node	or	a	leaf	node.	A	leaf	node	determines	the	value	456 

of	the	outcome	for	the	individual	with	the	exposure	profile	represented	by	the	decision	path	457 

taken	to	reach	it.	Each	decision	and	leaf	node	also	represents	a	subpopulation	of	the	cohort	458 

exposed	to	the	air	toxics	on	the	path	taken	to	reach	it.	Candidate	multi-air	toxic	459 

combinations	are	then	defined	as	the	air	toxics	and	thresholds	in	the	decision	nodes	460 

constituting	the	paths	from	the	root	of	a	tree	to	the	leaf	nodes.	We	calculated	the	frequency	461 

of	each	combination	as	the	number	of	XGBoost	models	(out	of	100)	where	it	was	included	in	462 

at	least	one	of	the	constituent	trees,	and	set	of	threshold	of	10	to	identify	the	most	relevant	463 

combinations.	Note	that,	if	two	or	more	variables	are	highly	correlated,	and	thus	similarly	464 

associated	with	the	outcome,	a	key	characteristic	of	the	decision	trees	in	the	XGBoost	465 

model	is	that	they	will	include	only	one	of	these	variables	as	an	internal	decision	node.	Thus,	466 

unlike	traditional	regression	models,	XGBoost	is	not	as	adversely	affected	by	collinearity	467 

among	the	input	variables.	Furthermore,	DEEP	executes	XGBoost	100	times	on	randomly	468 

selected	training	sets,	different	selections	of	these	variables	may	be	included	in	the	different	469 

trees	inferred,	thus	enhancing	the	coverage	of	the	air	toxic	profiles.	 	470 
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In	the	second	stage	of	DEEP,	a	multivariable	linear	regression	model	is	built	to	assess	471 

the	association	of	a	candidate	combination	with	the	target	outcome,	adjusted	for	covariates.	472 

The	asthma	outcome	is	the	dependent	variable	in	this	model,	while	the	air	toxic	473 

combination	and	covariates	are	its	independent	variables.	The	variable	representing	the	474 

combination	takes	a	value	of	1	for	individuals	exposed	to	it,	determined	using	the	threshold	475 

values	of	the	constituent	air	toxics,	and	0	otherwise.	One	model	is	built	for	each	outcome	476 

and	candidate	combination,	yielding	the	odds	ratio	(OR)	denoting	the	strength	of	the	477 

association	between	the	two.	The	p-values	of	all	the	associations	are	converting	into	false	478 

discovery	rates	(FDRs)	after	correcting	for	multiple	hypothesis	testing	using	the	479 

Benjamini-Hochberg	method	(36).	In	this	study,	significant	associations	were	identified	as	480 

those	with	FDR≤0.05.	481 

To	assess	potential	synergy	between	members	of	air	toxic	combinations	associated	482 

with	asthma	outcomes,	we	conducted	statistical	tests	for	interactions.	Interactions	between	483 

pairs	of	air	toxics	were	assessed	through	additional	multivariable	regression	models	where	484 

the	outcome	was	the	dependent	variable	and	predictors	included	the	levels	of	the	two	485 

toxics,	their	product	as	a	representative	of	their	interaction,	and	covariates.	For	486 

combinations	with	two	air	toxics,	this	regression	model	was	inferred	from	the	whole	cohort,	487 

while	for	combinations	with	three	air	toxics,	analyses	were	conducted	for	the	last	two	toxics	488 

on	the	sample	meeting	the	threshold	for	the	first	toxic	level	in	the	combination.	A	significant	489 
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interaction	was	identified	if	the	p-value	of	the	interaction	term	in	the	model	was	lower	than	490 

0.05.	491 

The	DEEP	framework	is	implemented	in	the	Python	programming	language	(71).	The	492 

XGBoost,	model	evaluation	(AUC	score	calculation)	and	regression	components	are	493 

implemented	using	the	xgboost	(33),	scikit-learn	(72)	and	statsmodels	(73)	Python	packages	494 

respectively.	495 
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Figure	1:	Study	overview.	Exposure	data	for	over	a	hundred	air	toxics	from	the	US	
Environmental	Protection	Agency’s	National	Air	Toxic	Assessment	(NATA)	database	were	
geocoded	to	Airway	in	Asthma	(ARIA)	cohort	participants	with	mild	to	severe	persistent	
asthma	(n=151),	based	on	participants’	residential	ZIP	code.	The	Data-driven	ExposurE	Profile	
extraction	(DEEP)	method	developed	in	this	study	was	then	applied	to	the	air	toxic	data	to	
identify	multi-air	toxic	combinations	associated	with	three	childhood	asthma	outcomes:	use	
of	prescribed	daily	asthma	controller	medication,	lifetime	emergency	department	visit	for	
asthma,	and	lifetime	overnight	hospitalization	for	asthma.	In	the	first	stage	of	DEEP,	multi-air	
toxic	combinations	were	identified	via	XGBoost	models	consisting	of	decision	trees.	In	the	
second	stage,	multivariable	logistic	regression	models	were	used	to	identify	air	toxic	
combinations	significantly	associated	with	childhood	asthma	outcomes	after	adjustment	for	
age,	gender,	race/ethnicity,	and	family	income.	(Some	images	in	this	figure	were	obtained	
from	www.flaticon.com	and	were	made	by	Wanicon,	Freepik	and	Flat	Icons.)	
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Figure	2:	Air	toxics	individually	associated	with	childhood	asthma	outcomes	after	adjustment	
for	age,	gender,	race/ethnicity,	and	family	income	in	ARIA	cohort	participants	with	persistent	
asthma	(n=151).	For	each	outcome	and	air	toxic,	the	strength	of	the	association	is	shown	in	terms	
of	its	odds	ratio	(OR),	95%	confidence	interval	(CI),	and	false	discovery	rate	(FDR).	 	 P-values	for	
individual	air	toxics	were	obtained	from	multivariable	logistic	regression	models	and	then	
adjusted	for	multiple	hypothesis	testing	using	the	Benjamini-Hochberg	procedure,	yielding	FDR	
values.
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Figure	3:	Multi-air	toxic	combinations	associated	with	childhood	asthma	outcomes	after	adjustment	
for	age,	gender,	race/ethnicity,	and	family	income	in	ARIA	cohort	participants	with	persistent	asthma	
(n=151).	For	each	outcome	and	combination,	the	strength	of	the	association	is	shown	in	terms	of	its	
odds	ratio	(OR),	95%	confidence	interval	(CI),	and	false	discovery	rate	(FDR).	The	P-values	for	multi-air	
toxic	combinations	were	obtained	from	multivariable	logistic	regression	models	and	then	adjusted	for	
multiple	hypothesis	testing	using	the	Benjamini-Hochberg	procedure,	yielding	FDR	values.
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Figure	4:	A	sample	decision	tree	learned	by	DEEP	to	predict	daily	asthma	controller	medication	using	
NATA-derived	air	toxic	data	geocoded	to	subjects	(n=149).	Each	node	in	the	tree	indicates	the	number	
of	participants	satisfying	the	air	toxic	decision	path	until	that	point	and	the	percentage	of	participants	
with	that	outcome.	The	sample	corresponding	to	each	node	is	stratified	into	two	subpopulations	based	
on	the	air	toxic	and	its	threshold	associated	with	the	node.	The	multi-air	toxic	combination	acrylic	acid	&	
cobalt	compounds,	which	was	the	most	significantly	associated	with	this	outcome,	is	highlighted	in	red.	
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Figure	5:	A	sample	decision	tree	learned	by	DEEP	to	predict	lifetime	emergency	room	visit	for	asthma	
from	NATA-derived	air	toxic	exposure	data	geocoded	to	each	subject	(n=151).	Each	node	in	the	tree	
indicates	the	number	of	participants	satisfying	the	air	toxic	decision	path	until	that	point	and	the	
percentage	of	participants	with	that	outcome.	The	sample	corresponding	to	each	node	is	stratified	into	
two	subpopulations	based	on	the	air	toxic	and	its	threshold	associated	with	the	node.	The	multi-air	toxic	
combination	acetaldehyde	&	carbon	disulfide	&	polychlorinated	biphenyls,	which	was	the	most	
significantly	associated	with	this	outcome,	is	highlighted	in	red.	
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Figure	6:	A	sample	decision	tree	learned	by	DEEP	to	predict	lifetime	overnight	hospitalization	for	
asthma	from	NATA-derived	air	toxic	data	geocoded	to	each	participant	(n=151).	Each	node	in	the	tree	
indicates	the	number	of	participants	satisfying	the	air	toxic	decision	path	until	that	point	and	the	
percentage	of	subjects	with	that	outcome.	The	sample	corresponding	to	each	node	is	stratified	into	two	
subpopulations	based	on	the	air	toxic	and	its	threshold	associated	with	the	node.	The	multi-air	toxic	
combination	hydroquinone	&	ethylidene	dichloride,	which	was	the	most	significantly	associated	with	this	
outcome,	is	highlighted	in	red.	
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Table	1:	Characteristics	of	the	ARIA	cohort	participants	included	in	this	study.	Mean	(standard	
deviation)	and	number	(%)	are	shown	for	continuous	and	categorical	variables	respectively.	Characteristics	
stratified	by	asthma	outcome	are	also	shown.	P-values	comparing	subjects	with	and	without	the	outcome	
are	shown	from	two-sided	student	t-test	for	continuous	variables	and	a	chi-squared	test	for	categorical	
variables.	*Two	participants	did	not	provide	information	about	their	daily	controller	medication	use.

		 All	 Daily	Controller	Medication*	 Emergency	Room	Visit	 Overnight	Hospitalization	

		 (n=151)	 Yes	(n=84)	 No	(n=65)	 p-value	 Yes	(n=103)	 No	(n=48)	 p-value	 Yes	(n=51)	 No	(n=100)	 p-value	

Age,	years	 12.0	(3.2)	 11.5	(3.2)	 12.6	(3.1)	 0.048	 11.7	(3.3)	 12.4	(2.9)	 0.23	 12.1	(3.2)	 11.9	(3.2)	 0.69	

Gender,	female	 62	(41.1%)	 33	(39.3%)	 29	(44.6%)	 0.63	 41	(39.8%)	 21	(43.8%)	 0.78	 19	(37.3%)	 43	(43%)	 0.61	

Race/ethnicity	
	 	 	

0.50	
	 	

0.03	
	 	

0.07	

	 	 	 	 	 Asian	 6	(4.0%)	 4	(4.8%)	 2	(3.1%)	
	

3	(2.9%)	 3	(6.3%)	
	

1	(2.0%)	 5	(5.0%)	
	

	 	 	 	 	 Black	 26	(17.2%)	 13	(15.5%)	 13	(20%)	
	

20	(19.4%)	 6	(12.5%)	
	

12	(23.5%)	 14	(14.0%)	
	

	 	 	 	 	 White	 57	(37.7%)	 33	(39.3%)	 24	(36.9%)	
	

32	(31.1%)	 25	(52.1%)	
	

12	(23.5%)	 45	(45.0%)	
	

	 	 	 	 	 Latino	 51	(33.8%)	 25	(29.8%)	 24	(36.9%)	
	

42	(40.8%)	 9	(18.8%)	
	

23	(45.1%)	 28	(28.0%)	
	

	 	 	 	 	 Mixed	 10	(6.6%)	 8	(9.5)	 2	(3.1%)	
	

5	(4.9%)	 5	(10.4%)	
	

3	(5.9%)	 7	(7.0%)	
	

	 	 	 	 	 Not	Reported	 1	(0.7%)	 1	(1.2%)	 0	(0%)	
	

1	(1.0%)	 0	(0.0%)	
	

0	(0%)	 1	(1.0%)	
	

Income,	US$	
49349.3	

(18725.8)	

48954.8	

(18701.7)	

49961.7	

(19017.3)	
0.75	

48870.9	

(19414.5)	

50375.8	

(17109.8)	
0.63	

45576.7	

(14822.9)	

51273.3	

(20161.2)	
0.053	

Asthma	Control	Test	(ACT)	score	 16.8	(3.9)	 16.4	(3.9)	 17.3	(4.0)	 0.16	 16.2	(4.0)	 18.0	(3.5)	 9.54*10-3	 15.9	(4.3)	 17.3	(3.7)	 0.05	

FEV1%	 87.1	(17.5)	 85.5	(17.7)	 88.6	(17.3)	 0.32	 86.2	(18.0)	 88.6	(16.6)	 0.45	 82.1	(19.7)	 89.4	(15.9)	 0.04	

FEV1/FVC	 79.6	(10.4)	 78.3	(10.5)	 80.8	(10.2)	 0.17	 79.4	(10.9)	 80.0	(9.5)	 0.77	 77.7	(10.5)	 80.4	(10.3)	 0.17	

Regular	use	of	asthma	medicine	
	 	 	 	 	 	 	 	 	 	

	 	 Beta	agonist	 145	(96.0%)	 83	(98.8%)	 60	(92.3%)	 0.11	 102	(99.0%)	 43	(89.6%)	 0.02	 51	(100%)	 94	(94.0%)	 0.18	

	 	 Inhaled	corticosteroid	(ICS)	 39	(25.8%)	 35	(41.7%)	 3	(4.6%)	 7.19*10-7	 27	(26.2%)	 12	(25.0%)	 1	 10	(19.6%)	 29	(29.0%)	 0.29	

	 	 Combined	ICS/LABA	 31	(20.5%)	 30	(35.7%)	 0	(0%)	 2.16*10-7	 28	(27.2%)	 3	(6.3%)	 5.97*10-3	 23	(45.1%)	 8	(8.0%)	 2.98*10-7	

	 	 Leukotriene	receptor	antagonist	 30	(19.9%)	 29	(34.5%)	 1	(1.5%)	 1.81*10-6	 23	(22.3%)	 7	(14.6%)	 0.37	 19	(37.3%)	 11	(11.0%)	 3.08*10-4	

	 	 Omalizumab	 2	(1.3%)	 1	(1.2%)	 1	(1.5%)	 1	 2	(1.9%)	 0	(0.0%)	 0.84	 0	(0.0%)	 2	(2.0%)	 0.79	
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Table	2:	Air	toxics	identified	by	DEEP	as	significantly	associated	with	at	least	one	of	the	three	asthma	

outcomes,	either	individually	or	in	combination	with	other	air	toxics.	D:	Air	toxic	associated	with	daily	asthma	

controller	medication.	E:	Air	toxic	associated	with	lifetime	emergency	room	visit	for	asthma.	O:	Air	toxic	

associated	with	lifetime	overnight	hospitalization	for	asthma.	 	

Air	toxic	
Level	at	participant’s	residential	ZIP	code	 	

Median	(IQR)	values	(in	ng/m3)	

Individually	

significant	 	

Significant	in	

combination(s)	

1,1,1-trichloroethane	 667.7	(120.5,	1452.9)	 		 D	
1,3-dichloropropene	 129	(1.75,	405.18)	 		 D	

1,4-dioxane	 3.16x10-3	(1.3x10-3,	0.18)	 		 O	

2,4-toluene	diisocyanate	 0.08	(7.2x10-3,	0.15)	 		 D	

Acetaldehyde	 2420.6	(1967.0,	2768.3)	 		 E	

Acetamide	 2.61x10-4	(1.7x10-4,	9.1x10-4)	 D,	O	 		

Acetophenone	 0.1	(0.02,	0.17)	 		 D	

Acrylamide	 4.24x10-4	(2.5x10-6,	6.6x10-3)	 		 E	

Acrylic	acid	 1.27x10-3	(4.98x10-4,	0.06)	 D	 D,	E,	O	

Arsenic	compounds	 0.73	(0.49,	1.13)	 O	 		

Benzidine	 1.44x10-5	(1.2x10-5,	2.5x10-5)	 D	 		

Beryllium	compounds	 0.16	(0.09,	0.27)	 E	 		

Carbon	disulfide	 5.66	(5.59,	9.57)	 		 E	

Carbonyl	sulfide	 0.03	(1.77x10-3,	0.25)	 		 O	

Chlorine	 0.91	(0.39,	1.28)	 D	 		

Cobalt	compounds	 0.15	(0.10,	0.19)	 		 D	

Cresol	cresylic	acid	 20.05	(15.1,	24.9)	 D	 		

Dimethyl	phthalate	 0.07	(0.04,	0.08)	 		 D	

Ethyl	chloride	 8.21	(7.8x10-3,	20.26)	 O		 D	

Ethylidene	dichloride	 0.12	(0.02,	0.22)	 		 O	

Glycol	ethers	 12.67	(2.58,	117.36)	 		 O	

Hexachlorobenzene	 1.2x10-6	(2.47x10-7,	3.91x10-4)	 D	 D	

Hydrochloric	acid	 208.8	(146.8,	301.7)	 O	 		

Hydroquinone	 7.3x10-3	(1.4x10-3,	0.03)	 O	 E,O	

Methyl	methacrylate	 1.62	(1.06,	2.79)	 		 O	

Mercury	compounds	 0.4	(0.22,	1.87)	 E	 E	

Pentachlorophenol	 4.6x10-7	(0,	1.4x10-6)	 D,	E	 		

Phenol	 3.34	(2.03,	22.35)	 D	 		

Phosphorus	 0.21	(0.11,	0.31)	 		 D	

Polychlorinated	biphenyls	 1.1x10-4	(1.2x10-5,	8.8x10-3)	 D,E	 E	

Quinoline	 0.14	(5.23x10-4,	0.17)	 O	 		

Toluene	 9392	(4984.58,	21249.3)	 		 D	

Trichloroethylene	 106.4	(18.1,	132.6)	 O	 O	

Triethylamine	 2.81	(1.82,	5.77)	 O	 		
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Table	3:	Air	toxic	combinations	associated	with	asthma	outcomes	with	statistically	significant	interactions	

between	combination	members.	The	p-values	are	for	the	interaction	term	of	multivariable	logistic	regression	

models	where	asthma	outcome	was	the	dependent	variable	and	independent	variables	included	member	air	toxic	

levels,	interaction	term,	and	covariates	(age,	gender,	race/ethnicity,	family	income).	

	 	

Outcome	 Air	Toxic	Combination	 Interactions	 P-value	

Daily	

Controller	

Medication	

Acrylic	acid	&	 	

Dimethyl	phthalate	

Acrylic	acid	&	 	

Dimethyl	phthalate	

0.02	

	 Acrylic	acid	&	 	

Cobalt	compounds	

Acrylic	acid	&	 	

Cobalt	compounds	

0.02	

Emergency	

Room	Visit	

Acrylic	acid	&	 	

Hydroquinone	

	

Acrylic	acid	&	

Hydroquinone	 	

<	0.004	
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Table	4:	Demographic	characteristics	of	children	exposed	and	not	exposed	to	the	acrylic	acid	&	cobalt	
compounds	combination,	which	was	associated	with	daily	asthma	controller	medication.	Mean	(standard	
deviation)	and	number	(%)	are	shown	for	continuous	and	categorical	variables,	respectively.	Also	shown	
are	p-values	for	the	differences	between	the	two	groups	of	children,	calculated	using	a	two-sided	two	
sample	student	t-test	for	continuous	variables	and	a	chi-square	test	for	categorical	variables.	
	

	
Multi-air	toxic	combination:	Acrylic	acid	&	Cobalt	compounds	

Variable	
Total	 	

(n=149)	
Children	exposed	to	
combination	(n=23)	

Children	not	exposed	to	
combination	(n=126)	

p-value	

Age,	years	 12.0	(3.2)	 13.7	(3.6)	 11.7	(3.0)	 0.02	
Gender,	female	 87	(58.4)	 14	(60.9)	 73	(57.9)	 0.97	
Race/ethnicity	 		 		 		 0.089	
	 	 	 Asian	 6	(4.0)	 0	(0.0)	 6	(4.8)	 	

	 	 	 Black	 26	(17.4)	 5	(21.7)	 21	(16.7)	 	
	 	 	 White	 57	(38.3)	 6	(26.1)	 51	(40.5)	 	
	 	 	 Latino	 49	(32.9)	 8	(34.8)	 41	(32.5)	 	
	 	 	 Mixed	 10	(6.7)	 3	(13.0)	 7	(5.6)	 	
	 	 	 Not	Reported	 1	(0.7)	 1	(4.3)	 0	(0.0)	 	
Income,	US$	 49394.0	(18846.6)	 46339.2	(15671.1)	 49951.7	(19318.1)	 0.34	
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Table	5:	Demographic	characteristics	of	children	exposed	and	not	exposed	to	the	acetaldehyde	&	
carbon	disulfide	&	polychlorinated	biphenyls	combination,	which	was	associated	with	lifetime	
emergency	room	visit	for	asthma.	Mean	(standard	deviation)	and	number	(%)	are	shown	for	continuous	
and	categorical	variables,	respectively.	Also	shown	are	p-values	for	the	differences	between	the	two	
groups	of	children,	calculated	using	a	two-sided	student	t-test	for	continuous	variables	and	a	chi-square	
test	for	categorical	variables.	
	

	

Multi-air	toxic	combination:	Acetaldehyde	&	Carbon	disulfide	&	 	
Polychlorinated	biphenyls	

Variable	
Total	 	

(n=151)	
Children	exposed	to	
combination	(n=48)	

Children	not	exposed	
to	combination	(n=103)	

p-value	

Age,	years	 12.0	(3.2)	 10.0	(2.6)	 12.9	(3.0)	 5.34x10-8	
Gender,	female	 89	(58.9)	 28	(58.3)	 61	(59.2)	 0.94	
Race/ethnicity	 		 		 		 0.0046	
	 	 	 Asian	 6	(4.0)	 3	(6.2)	 3	(2.9)	 	

	 	 	 Black	 26	(17.2)	 14	(29.2)	 12	(11.7)	 	
	 	 	 White	 57	(37.7)	 9	(18.8)	 48	(46.6)	 	
	 	 	 Latino	 51	(33.8)	 19	(39.6)	 32	(31.1)	 	
	 	 	 Mixed	 10	(6.6)	 2	(4.2)	 8	(7.8)	 	
	 	 	 Not	Reported	 1	(0.7)	 1	(2.1)	 0	(0.0)	 	
Income,	US$	 49349.3	(18725.8)	 44708.3	(14015.1)	 51512.0	(20194.5)	 0.019	
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Table	6:	Demographic	characteristics	of	children	exposed	and	not	exposed	to	the	hydroquinone	&	 	
ethylidene	dichloride	combination,	which	was	associated	with	lifetime	overnight	hospitalization	for	
asthma.	Mean	(standard	deviation)	and	number	(%)	are	shown	for	the	continuous	and	categorical	
variables,	respectively.	Also	shown	are	p-values	for	the	differences	between	the	two	groups	of	children,	
calculated	using	a	two-sided	student	t-test	for	continuous	variables	and	a	chi-squared	test	for	categorical	
variables.	
	

	
Multi-air	toxic	combination:	Hydroquinone	&	Ethylidene	dichloride	

Variable	
Total	(n=151)	

Children	exposed	to	
combination	(n=17)	

Children	not	exposed	to	
combination	(n=134)	

p-value	

Age,	years	 12.0	(3.2)	 9.9	(2.5)	 12.2	(3.2)	 0.0022	

Gender,	female	 89	(58.9)	 12	(70.6)	 77	(57.5)	 0.44	
Race/ethnicity	 		 		 		 0.32	
	 	 	 Asian	 6	(4.0)	 0	(0.0)	 6	(4.5)	 	

	 	 	 Black	 26	(17.2)	 2	(11.8)	 24	(17.9)	 	
	 	 	 White	 57	(37.7)	 4	(23.5)	 53	(39.6)	 	
	 	 	 Latino	 51	(33.8)	 10	(58.8)	 41	(30.6)	 	
	 	 	 Mixed	 10	(6.6)	 1	(5.9)	 9	(6.7)	 	
	 	 	 Not	Reported	 1	(0.7)	 0	(0.0)	 1	(0.7)	 	
Income,	US$	 49349.3	(18725.8)	 40226.8	(6929.4)	 50506.6	(19420.4)	 8.26x10-5	
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