JCI The Journal of Clinical Investigation

Machine learning-driven identification of early-life air toxic combinations associated with childhood asthma outcomes

Yan-Chak Li, ..., Gaurav Pandey, Supinda Bunyavanich

J Clin Invest. 2021. https://doi.org/10.1172/JCI152088.

Research In-Press Preview Pulmonology

Graphical abstract

Air toxic combinations associated with asthma outcomes

Find the latest version:

https://jci.me/152088/pdf

1	Title: Machine learning-driven identification of early-life air toxic combinations associated
2	with childhood asthma outcomes
3	
4	Authors: Yan-Chak Li ^{1\$} , Hsiao-Hsien Leon Hsu ^{2,3\$} , Yoojin Chun ¹ , Po-hsiang Chiu ¹ , Zoe Arditi ^{1,4} ,
5	Luz Claudio ^{2,3} , Gaurav Pandey ^{1,3} *, Supinda Bunyavanich ^{1,4} *
6	
7	Affiliations:
8	¹ Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai
9	and Icahn Institute for Data Science and Genomic Technology, New York, NY, USA
10	² Department of Environmental Medicine and Public Health, Icahn School of Medicine at
11	Mount Sinai, New York, NY, USA
12	³ Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY,
13	USA
14	⁴ Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at
15	Mount Sinai, New York, NY, USA
16	^{\$} Contributed equally to this work
17	*Co-corresponding Authors
18	

- 19 Correspondence: Supinda Bunyavanich, One Gustave Levy Place, Box #1498, New York, NY
- 20 10029, tel. +1-212-241-5548, <u>supinda@post.harvard.edu</u>; Gaurav Pandey, One Gustave Levy
- 21 Place, Box #1498, New York, NY 10029, tel. +1-212-659-8535, gaurav.pandey@mssm.edu

22 Abstract:

23 Air pollution is a well-known contributor to asthma. Air toxics are hazardous air pollutants 24 that cause or may cause serious health effects. While individual air toxics have been 25 associated with asthma, only a limited number of studies have specifically examined 26 combinations of air toxics associated with the disease. We geocoded air toxic levels from 27 the US National Air Toxics Assessment (NATA) to residential locations for participants of our 28 AiRway in Asthma (ARIA) study. We then applied Data-driven ExposurE Profile extraction 29 (DEEP), a novel machine learning-based method, to discover combinations of early-life air 30 toxics associated with current use of daily asthma controller medication, lifetime emergency 31 department visit for asthma, and lifetime overnight hospitalization for asthma. We 32 discovered 20 multi-air toxic combinations and 18 single air toxics associated with at least 33 one outcome. The multi-air toxic combinations included those containing acrylic acid, 34 ethylidene dichloride, and hydroquinone, and they were significantly associated with 35 asthma outcomes with odds ratios of 1.60 to 3.19. Several air toxic members of the 36 combinations would not have been identified by single air toxic analyses, supporting the use 37 of machine learning-based methods designed to detect combinatorial effects. Our findings 38 provide knowledge about air toxic combinations associated with childhood asthma.

39 Introduction

40	Air toxics are hazardous air pollutants that cause or may cause serious health effects
41	(1). They are well-established detriments to human respiratory health, especially for
42	children (2-8). In particular, exposure to air toxics early in life predisposes children to
43	asthma, one of the most prevalent diseases in this demographic group. Epidemiologic
44	studies have linked prenatal and early life exposure to air toxics with childhood wheeze,
45	asthma, and altered lung function (6-14).
46	Although air toxics are generally analyzed and regulated as individual chemicals (6), we
47	are exposed to combinations of air toxics in ambient air. The specific combinations of
48	individual air toxics that influence childhood asthma have not been studied adequately.
49	Assessing the respiratory health effects of multiple air toxics is challenging for several
50	reasons (7, 15). First, it is logistically difficult and expensive to collect detailed individualized
51	exposure data for multiple air toxics using personal or local monitoring. Additionally, there
52	are limited statistical methods to parse the effects of mixtures where individual air toxics
53	may only contribute slightly to an adverse outcome, but have a different impact in
54	combination with other air toxics (15). As a result, few studies have considered
55	simultaneous exposure to air toxic mixtures and their associations with children's health,
56	including asthma (8, 15-17).

57	Several studies linking air toxic mixtures and health outcomes, as well as a prior review
58	of 57 studies that examined air pollutants and their health effects, reached no consensus on
59	the ideal methods for multi-pollutant analyses (6, 7, 15, 16, 18). A key limitation of the
60	studies reviewed was that most metrics assumed pure additivity of the effects of multiple
61	air toxics, without consideration of synergistic and/or antagonistic interactions. Due to these
62	challenges, air toxic combinations that collectively influence childhood asthma remain
63	suboptimally characterized. Furthermore, identifying air toxic combinations associated with
64	health outcomes is also difficult due to the exponentially large number of combination
65	subsets in a set of air toxics, i.e., 2 ^N -1 combinations in a set of N air toxics. Conventional
66	statistical methods (19-24) and feature importance assessment using machine learning
67	algorithms (16, 25-27) have not been effective for this task since they generally assess the
68	association of air toxics individually.
69	In this study, we hypothesized that exposure to combinations of air toxics during early
70	life is associated with asthma outcomes in later childhood. These outcomes included current
71	need for daily asthma controller medication, lifetime emergency room visit for asthma, and
72	lifetime overnight hospitalization for asthma (Figure 1). Asthma-related medication use,
73	emergency room visits, and hospitalizations are frequently studied asthma outcomes that
74	reflect asthma severity, control, and healthcare utilization (28-30). While some studies have
75	reported associations between particular air toxics and these asthma subphenotypes (9, 11,

76	12), none addressed our goal to identify combinations of air toxics from a large national
77	assessment of air toxics associated with these asthma outcomes. We tested our hypothesis
78	by geocoding levels of 125 air toxic from the US Environmental Protection Agency's (EPA)
79	National Air Toxic Assessment (NATA) (31), one of the richest sources of multi-air toxic
80	profiling across the US, to the residential addresses of children with asthma from our Airway
81	in Asthma (ARIA) study (32) to map each child's exposure to air toxics during the first years
82	of life. We addressed the challenges of combinatorial air toxic analysis by applying a
83	machine learning-based algorithm called D ata-driven E xposur E P rofile extraction (DEEP),
84	which, to the best of our knowledge, is a novel method for this problem. DEEP uses the
85	high-performing eXtreme Gradient Boosting (XGBoost) (33) algorithm to identify air toxic
86	combinations associated with health outcomes. The combinations identified using XGBoost
87	were then adjusted for potential confounders, including age, gender, race/ethnicity, and
88	family income, to identify early-life multi-air toxic combinations, statistical interactions
89	within combinations, and demographic profiles associated with adverse asthma outcomes in
90	later childhood. Our approach identified several combinations of air toxics associated with
91	asthma.
92	

93 Results

95 Characteristics of the study cohort

96	Table 1 shows the characteristics of the Airway in Asthma (ARIA) study (32) participants
97	with asthma examined in this study. These 151 children with mild to severe persistent
98	asthma were recruited from the Mount Sinai Health System, New York, NY with informed
99	consent from their parent/guardian via an IRB-approved protocol. Participants had a mean
100	age of 12 years (standard deviation 3.2 years) at the time of assessment, and were of
101	diverse self-identified racial/ethnic backgrounds (Table 1). Their asthma was generally not
102	well-controlled, with a mean score on the Asthma Control Test (ACT)(34) of 16.8 (maximum
103	value 25 representing optimal control), and 96% of the cohort reporting regular use of a
104	short-acting beta agonist rescue inhaler.
105	Children who used daily asthma controller medication (n=84, 56%) were younger than
106	those who did not (n=65; p=0.048). Inhaled corticosteroids (ICS) were used most frequently,
107	both independently and in combination with long-acting beta agonist (LABA). Children who
108	had at least one lifetime emergency room visit for asthma (n=103, 68%) were more likely to
109	self-identify as Black or Latino, had significantly lower ACT scores than their counterparts
110	who had never required an emergency department visit for asthma, and were more likely to
111	be taking combination ICS/LABA as their daily asthma controller medication. Children who
112	had been hospitalized overnight for asthma in their lifetime (n=51, 34%) had significantly
113	lower forced expiratory volume in 1 second percent predicted (FEV1%) on spirometry, and

higher rates of ICS/LABA and leukotriene receptor antagonist for daily asthma treatment
compared to the participants with asthma who had never been hospitalized overnight for
asthma.

117

118 Air toxic characteristics

Ambient annual average concentrations for over a hundred toxics based on emissions inventories and computer simulation models are publicly available for each US census tract in the EPA's NATA database (31). We mapped the available toxic levels to the residential ZIP code for each child in our cohort. Ninety-four zip codes spanning 443 square miles across New York, New Jersey, and Connecticut were represented in this cohort. We used the closest calendar year of NATA data available subsequent to a child's birth date. We retained only the air toxics whose levels were available for all the participants in the mapped

126

127

128 **DEEP-enabled identification of combinations of air toxics associated with childhood**

datasets, yielding 125 air toxics for analysis.

129 *asthma*

130 We then applied DEEP to identify air toxic combinations associated with each of the

131 three childhood asthma outcomes, namely the need for daily asthma controller medication,

132 lifetime emergency room visit for asthma, and lifetime overnight hospitalization for asthma.

133 In the first analytical stage of DEEP (detailed in Methods), for each outcome, the full dataset 134 was randomly split 100 times into training and test sets in an 80:20 ratio. For each split, an 135 XGBoost model consisting of 100 decision trees was learned from the training set and 136 evaluated on the test set in terms of the Area Under the ROC Curve (AUC score) (35). 137 In the second analytical stage of DEEP, we analysed the combinations of toxics from the 138 XGBoost models, identified as root-to-leaf paths in the constituent decision trees, for each 139 outcome. Note that in some cases, a combination may consist of only one air toxic if it is 140 sufficient to predict the outcome under consideration for a subset of the cohort, thus giving 141 DEEP flexibility in discovery. Also, in cases of multiple air toxics in these combinations, their 142 sequence of appearance on the path also indicates their relative order of relevance to the 143 outcome being predicted. This is because variables closer to the root of a decision tree have 144 higher predictive power than those closer to the leaves. 145 Next, the frequency of each combination was calculated as the number of models (out 146 of 100) where it was included in at least one of the constituent trees. Candidate 147 combinations were then identified as those with a frequency of at least ten. These 148 combinations were then used in multivariable regression models to test their association 149 with the asthma outcome of interest, while adjusting for age, gender, race/ethnicity, and 150 income.

151	689 profiles of air toxics across all the asthma outcomes were discovered after the first
152	XGBoost stage of DEEP. These sets included both individual air toxics and their combinations.
153	359 of these sets were then found to be significantly associated ($P \leq 0.05$) with the
154	respective outcome in the second stage of DEEP. After multiple hypothesis correction by the
155	Benjamini-Hochberg procedure (36), 273 air toxic profiles were found to be significantly
156	associated (FDR \leq 0.05) with at least one of the three outcomes. Our goal was to identify air
157	toxic combinations whose increased levels are associated with adverse asthma outcomes.
158	Therefore, among the significantly associated combinations, we focused on groups that
159	included air toxics with levels higher than threshold. Among these finally determined
160	combinations, there were 18 with only one air toxic each (Figure 2), and 20 multi-air toxic
161	combinations (Figure 3).
162	
163	Air toxic combinations associated with asthma outcomes
164	Twenty multi-air toxic combinations and eighteen individual air toxics were found to be
165	significantly associated with at least one of the three asthma outcomes. The medians and
166	interquartile ranges of the exposure levels of the 34 air toxics included in these associations
167	are shown in Table 2 .

asthma outcomes (**Figure 2**). Odds ratios (ORs) for these associations ranged from 1.56 to

Higher levels of seventeen individual air toxics were significantly associated with worse

168

170	2.65. Several of the identified toxics are established risk factors for childhood asthma,
171	especially the chemicals previously categorized as halogenated, ketones and ethers (8,
172	37-39). Among these, the air toxics most associated with the outcomes were acrylic acid
173	(OR=2.10), mercury compounds (OR=2.65), and ethyl chloride (OR=1.87) respectively.
174	Acetamide, pentachlorophenol, and polychlorinated biphenyls were associated with more
175	than one asthma outcome.
176	A major strength of DEEP is its ability to identify multi-air toxic combinations associated
177	with health outcomes. Indeed, here DEEP revealed significant associations between higher
178	exposure to 20 multi-air toxic combinations and the three asthma outcomes of interest
179	(Figure 3). Among these, 19 combinations included two air toxics and one included three.
180	The associations of these combinations were generally stronger than those of the individual
181	air toxics, with ORs ranging from 1.60 to 3.19 (Figure 3).
182	Notably, acrylic acid was not only the individual air toxic most strongly associated with
183	daily controller medication (Figure 2), it was the first (i.e. primary) member of 7 of the 9
184	multi-air toxic combinations associated with this outcome (Figure 3). Acrylic acid also
185	appeared in 3 of the other 11 combinations associated with emergency room visit and
186	overnight hospitalization for asthma (Figure 3), indicating that it is a major contributor to
187	adverse asthma outcomes among children.

188	Three air toxic combinations were associated with lifetime emergency room visit for
189	asthma, all with an OR of over 2 (Figure 3). Acetaldehyde, acrylamide, and acrylic acid were
190	the primary exposures in these combinations, despite the fact they were not individually
191	significantly associated with the outcome. Several other air toxics in these combinations,
192	namely carbon disulfide and hydroquinone, were also not individually associated with this
193	outcome. These findings highlight the main strength of DEEP, namely its ability to identify
194	significant multi-air toxic combinations, whose constituent air toxics may not be individually
195	associated with the health outcome of interest.
196	Among the eight air toxic combinations associated with lifetime overnight
197	hospitalization for asthma, 1,4-dioxane, carbonyl sulfide, ethylidene dichloride, hydrochloric
198	acid, and hydroquinone were the primary exposures (Figure 3). Both ethylidene dichloride
199	and hydroquinone appeared in three of these eight combinations, indicating that these two
200	chemicals may play a role in the development of poor asthma outcomes among children.
201	Most other air toxics in these combinations (Figure 3) were largely not individually
202	associated with this outcome (Figure 2), again supporting DEEP's ability to identify multi-air
203	toxic combinations that may not be inferred from single air toxic associations.
204	
205	Effect sizes of multi-air toxic combinations may not be evident from the individual
206	associations of their members

207 Some air toxics had relatively low effect sizes when assessed individually (Figure 2) 208 compared to the larger ORs from combination analyses (Figure 3). For example, acrylic acid 209 was associated with daily controller medication with an OR of 2.10 as an individual air toxic 210 (Figure 2), but the ORs of its combinations with dimethyl phthalate, 1,1,1-trichloroethane, 211 ethyl chloride, acetophenone, and cobalt were higher (OR 2.16 to 3.19; Figure 3). Also, none 212 of these five air toxics were individually associated with the outcome. Similarly, 213 hexachlorobenzene was associated with daily controller medication with an OR of 2.03 214 (Figure 2), while simultaneous exposure to the combination of hexachlorobenzene and 215 dimethyl phthalate identified by DEEP had an OR of 2.96 (Figure 3). This was despite the fact 216 that there was no significant individual association between dimethyl phthalate and the 217 outcome. For the pair of toluene and phosphorus, neither air toxic was individually 218 associated with daily controller medication (Figure 2), but their combination was associated 219 with the outcome with an OR of 1.81 (Figure 3). 220 Similar cases of combinatorial effects were also seen for lifetime emergency room visit 221 for asthma. For example, simultaneous exposure to polychlorinated biphenyl, acetaldehyde 222 and carbon disulfide had 3.10-fold odds of the outcome (Figure 3), while polychlorinated 223 biphenyl's individual effect size was substantially lower (OR=1.72; Figure 2). Similarly, the 224 combination of acrylic acid and hydroquinone was significantly associated with emergency

225	room visit with an OR of 2.73 (Figure 3), but neither was associated with the outcome
226	individually (Figure 2).

227	We observed similar results for multi-air toxic combinations and lifetime overnight
228	hospitalization for asthma. Exposure to hydroquinone was individually associated with this
229	outcome with an OR of 1.79 (Figure 2), but in combination with ethylidene dichloride, the
230	association was stronger (OR=2.03; Figure 3). Similarly, carbonyl sulfide was not individually
231	associated with this outcome (Figure 2), but it was the primary member in two of the
232	multi-air toxic combinations found to be associated with OH (Figure 3).
233	In summary, the above comparison of the effect sizes of the individual (Figure 2) and
234	multi- (Figure 3) air toxic associations demonstrated that combinations of air toxics had
235	effects that were not fully explained by simply adding together the individual effects from
236	their constituents. Overall, DEEP identified 34 air toxics associated with the asthma
237	outcomes (Table 2), including 16 air toxics with significant effects only as members of
238	combinations.
239	
240	Statistical Interactions among Members of Air Toxic Combinations
241	To assess potential synergy between members of air toxic combinations associated
242	with asthma outcomes, we conducted statistical tests for interactions. Significant statistical
243	interactions detected between air toxic members within the combinations are shown in

244	Table 3 . Acrylic acid was the primary air toxic (i.e. primary branch point in the decision tree)
245	of all the combinations with significant statistical interactions. While other combinations did
246	not reveal significant interactions, such interactions remain possible given the limitations of
247	statistical detection of interactions. Directed experimental work could be undertaken to test
248	for additional interactions.
249	
250	Representative Air Toxic Combinations and Demographic Risk Factors
251	Finally, one of the advantages of DEEP is that the trees constituting its underlying
252	XGBoost models can be visualized and interpreted, which is difficult to do for several other
253	machine learning methods. However, since it is difficult to simultaneously depict all the
254	trees inferred by DEEP, we visualized sample trees that contained the most strongly
255	associated multi-air toxic combination for each childhood asthma outcome. Sample decision
256	trees inferred by DEEP for each of the outcomes are shown in Figures 4, 5, and 6
257	respectively. To provide an additional level of interpretation, we also compared the
258	demographic characteristics (age, sex, race/ethnicity, and family income) of children
259	exposed to each of these combinations to those of children who were not exposed in Tables
260	4, 5, and 6. Differences could suggest demographic risk factors that may increase a child's
261	exposure to these multi-air toxic combinations.

263	controller medication use with the highest odds ratio of 3.19 (Figure 3, Figure 4). Children
264	exposed to this combination were older compared to those who were not (p=0.02; Table 4).
265	Acetaldehyde, carbon disulphide, and polychlorinated biphenyls was the air toxic
266	combination most strongly associated with lifetime emergency room visit for asthma
267	(OR=3.10; Figure 3, Figure 5). Children exposed to this combination were younger
268	(p=5.34x10 ⁻⁸ ; Table 5) and had lower family income than those who were not exposed
269	(p=0.019; Table 5). Exposed children were also less likely to be White (p=0.0046; Table 5).
270	These observations point to social disparities among these groups of children.
271	The most strongly associated combination for overnight hospitalization was
272	hydroquinone and ethylidene dichloride (OR=2.03; Figure 3, Figure 6). Children exposed to
273	this combination were younger (p=0.00218; Table 6) and had lower family incomes
274	(p=8.26x10 ⁻⁵ ; Table 6) than those who were not exposed.
275	
276	Discussion
277	Our application of a novel machine learning-driven algorithm called DEEP to a cohort of
278	mild to severe asthmatic children identified several individual and combinations of air toxics,

Acrylic acid and cobalt compounds was the air toxic combination associated with daily

262

- 279 to which increased exposure during early-life was associated with adverse asthma outcomes
- 280 in later childhood. In particular, due to a unique ability of DEEP to examine air toxic

282 with childhood asthma outcomes in combination with other air toxics. 283 Many air toxics in the identified combinations, such as carbonyl sulfide, carbon 284 disulfide, ethyl chloride, and ethylidene chloride, are similar in structure and have analogous 285 formation, production, chemical fate, and chemical transport properties (40). Ten air toxics 286 in the combinations contained chlorine, three included heavy metal compounds, and many 287 were acidic chemicals. This aligns with prior literature implicating acidic chemicals, 288 chlorinated chemicals, and heavy metal compounds as risk factors for asthma and asthma 289 severity (8, 41-44). However, an understanding of the biological mechanisms through which 290 these combinations of air toxics can jointly affect respiratory health and asthma merits 291 further study. 292 Among the air toxics individually associated with asthma outcomes (Figure 2), 293 triethylamine was associated with increased overnight hospitalizations for asthma. 294 Triethylamine is a clear, colorless liquid used in waterproofing and as a catalyst, corrosion 295 inhibitor, and propellant (45). It is a respiratory irritant, to which chronic exposure even at 296 low levels can inhibit the function of organic cationic transporters, thus preventing efficient 297 uptake of inhaled bronchodilators used to control acute asthma symptoms (46, 47). 298 Acrylic acid was individually associated with daily controller medication (Figure 2) and 299 appeared as a member of at least one combination associated with all three outcomes

combinations, we identified 16 air toxics that were only found to be significantly associated

281

300	(Figure 3). Furthermore, it was found to interact with other member air toxics of three
301	combinations (Table 3). Acrylic acid is used in the manufacture of adhesives, elastomers,
302	plastics, coatings, as well as floor paints and polishers (48). Literature has suggested that the
303	presence of water-soluble cobalt complexes increases the conversion of polyacrylic acid into
304	acrylic acid, which is more biologically viable. Acrylic acid also reacts with cobalt complexes
305	to produce organocobalt complexes (49). Additionally, hydroquinone acts as a stabilizer to
306	prevent the polymerization of acrylic acid, which keeps the latter in a form with a lower
307	molecular weight that is more biologically viable (50, 51). Our results, including evidence of
308	statistical interactions between acrylic acid and other chemical compounds, suggest further
309	investigation of mechanisms for acrylic acid's associations with adverse childhood asthma
310	outcomes.
311	Ethyl chloride, also known as chloroethane (C ₂ H ₅ Cl), and ethylidene dichloride (C ₂ H ₄ Cl ₂)
312	are both chlorinated hydrocarbons. Ethyl chloride is used as a thickening agent and binder in
313	paints and cosmetics, and as a refrigerant, aerosol spray propellant, anesthetic, and blowing
314	agent for foam packaging (52). We found ethyl chloride to be associated with asthma
315	outcomes, both as an individual air toxic (overnight hospitalizations; Figure 2) and as a
316	member of multi-air toxic combinations (daily controller medication; Figure 3). Ethylidene
317	dichloride, which is mainly used as a solvent for plastics, oils and fats, and as a degreaser

318 and fumigant in insecticide sprays (53), appeared as a member of several combinations

319	associated with lifetime overnight hospitalization for asthma (Figure 3). Both these
320	compounds are well-known members of the chloroethanes family, which is comprised of
321	liposoluble chemicals that can be taken up by the lipoprotein within the alveolar film layer
322	(AFL) (54). AFL disruption is observed in multiple pulmonary diseases, including acute
323	respiratory distress syndrome, infant respiratory distress syndrome, emphysema, chronic
324	obstructive pulmonary disease, asthma, chronic bronchitis, pneumonia, pulmonary
325	infections, and idiopathic pulmonary fibrosis (55). Thus, chronic exposure to ethyl chloride
326	and ethylidene dichloride may lead to dysfunction in the AFL, which may contribute to
327	worse asthma control.
328	Hydroquinone, a commonly studied air toxic, was also identified in our analyses. While
329	exposure to higher levels of hydroquinone alone was not associated with overnight
330	hospitalization for asthma, DEEP identified it as a member of several multi-air toxic
331	combinations associated with this outcome (Figure 3). Hydroquinone is commonly found in
332	the indoor environment, and exposure to it has been associated with airway
333	hypersensitivity (56-59). Hydroquinone is widely seen in cosmetic and health products,
334	including skin creams (60). It is thought to prevent the polymerization of acrylic acid, methyl
335	methacrylate, cyanoacrylate, and other monomers that are susceptible to radical-initiated
336	polymerization, thus allowing them to persist in their original form (50, 51). This suggests a
337	mechanism through which the identified synergistic combination of hydroquinone with

338	acrylic acid (emergency room visit; Figure 3) is associated with adverse asthma outcomes.
339	Although our analysis did not find a statistically significant interaction between
340	hydroquinone and ethylidene dichloride, potentially due to lower exposure levels,
341	hydroquinone is industrially added to shelf ethylidene dichloride as a stabilizer (61). This
342	suggests that in the presence of hydroquinone, ethylidene dichloride is less likely to react
343	with other chemicals in the environment, and thus retain its toxic form longer (similar to
344	acrylic acid). Thus, it is still possible that hydroquinone and ethylidene dichloride may act
345	synergistically, but this needs to be investigated in future studies.
346	While our study has advanced the identification of air toxic combinations associated
347	with childhood asthma outcomes, it also has limitations. We used the NATA national model
348	(31) to estimate exposures rather than personal sampling or local monitors. Collecting
349	personal or locally monitored measures for 125 air toxics at each cohort participant's
350	residence would be logistically and financially challenging. Given this, NATA is commonly
351	used for estimating ambient exposures, since it is a well-validated deterministic dispersion
352	chemical transportation model created by the EPA that accounts for sources included in the
353	NATA emission inventory (31). NATA estimates of a given air toxic may under-report a
354	personally or locally monitored value, since the latter may include emissions from indoor
355	and undocumented sources not in the EPA's inventory. For instance, one study found that
356	higher personally monitored benzene concentrations relative to NATA-predicted values

357	were likely due, at least in part, to indoor sources not included in the EPA's inventory (62).
358	Other studies also found discrepancies between NATA estimates and monitored chemical
359	concentrations, due again, in part, to local or indoor sources (63, 64).
360	Despite the above limitations, using NATA as the primary source of exposure estimates
361	has several strengths over locally monitored values. First, NATA has a finer geographical
362	prediction resolution and spread than currently available monitoring sites (31). This enabled
363	us to include participants in our study that may not have had a monitoring site close to their
364	residence. Second, NATA data are generated from an advanced chemical transportation
365	model that aggregates exposure over a long period, and thus is able to capture transient
366	exposures. Also, several factors potentially affecting air toxic estimates, such as seasonality,
367	ambient temperature, meteorology, precipitation, and solar radiation, have already been
368	incorporated into NATA's model (31). This level of comprehensive modelling is typically not
369	available from personal or local monitoring. Finally, local measurements may also have
370	detection and quantification limits, while NATA is able to estimate air toxics even at lower
371	levels and over a longer period of time. Due to these strengths, we chose to study NATA
372	data in this work.
373	We recognize that our results do not provide evidence of a causal effect of any
374	chemical on adverse childhood asthma outcomes, which will need further investigation.
375	Additionally, our geocoding was based on a single zip code for each participant so would not

376	account for potentially dynamic exposures due to residential moves. Last, our study
377	participants were all from the New York, New Jersey, and Connecticut tri-state area. Thus,
378	our findings may not generalize to other US regions or parts of the world. Future studies
379	could examine combinations from other geographical regions and/or utilize direct air
380	sampling to confirm the combinations identified in this study.
381	In conclusion, this study demonstrated innovative use of data science methods and
382	data sources to identify specific combinations of early-life air toxic exposures associated
383	with later childhood asthma outcomes. Our study suggests that chemical pollutants should
384	be closely monitored together in combination, especially for locations with vulnerable
385	populations.
386	
387	Materials and Methods
388	An overview of the study approach is shown in Figure 1 .
389	
390	Study Population
391	The study population included children with asthma from the AiRway In Asthma (ARIA)
392	study, a cohort recruited from the Mount Sinai Health System, New York, NY (32). The study
393	was approved by the Mount Sinai Institutional Review Board. Children with asthma had mild
394	to severe persistent asthma according to National Asthma Education and Prevention

395	Program (NAEPP)/National Heart Lung Blood Institute (NHLBI) Expert Panel Report 3 (EPR3)
396	criteria (65) and positive bronchodilator response on spirometry or methacholine challenge
397	with provocative challenge causing a 20% fall in forced expiratory volume (PC20) < 12.5
398	mg/ml. Phenotyping for all participants included detailed questionnaires about
399	asthma-related symptoms, medication and healthcare use, and pre and post-
400	bronchodilator spirometry following American Thoracic Society guidelines (65).
401	
402	Asthma Outcomes
403	We focused on the following three self-reported asthma-related outcomes: (1) current use
404	of prescribed daily asthma controller medication (daily controller medication), (2) at least
405	one emergency department visit for asthma during subject's lifetime (emergency room visit),
406	and (3) at least one overnight hospitalization for asthma during subject's lifetime (overnight
407	hospitalization).
408	
409	Air Toxic Exposures
410	The air toxic exposure profile of each participant was derived from EPA's National Air Toxics
411	Assessment (NATA) (31). NATA estimates the annual ambient concentrations of over a
412	hundred air toxics at each census tract in the United States based on emissions inventories
413	and advanced computer simulation models (31). Seasonality of air toxics, ambient

414

temperature, meteorology, precipitation and solar radiation are incorporated into NATA's

415 model (31).

416	NATA data are available for 1996, 1999, 2002, 2005, 2011, and 2014 (27), and children
417	in this study were born between 1997 and 2012. To assign the most representative ambient
418	air toxic exposure levels to each participant, we mapped the residential ZIP code of each
419	child in our cohort to the geometric centroid of the closest census tract (31). We then used
420	the annual exposure data for that tract from the NATA release closest in time following the
421	child's birth year. This choice of year closest to birth was based on prior evidence that
422	early-life exposure to air pollution is associated with childhood asthma outcomes (66-68).
423	Finally, we retained the 125 air toxics that had data available, i.e., no missing data, for all
424	participants in the final dataset (15, 69).
425	
426	Covariates
427	We included age, sex, race/ethnicity, and family income as covariates in multivariable
428	regression models based on considerations that these variables could confound associations
429	between air toxic levels and asthma outcomes. Since the questionnaire completed by ARIA
430	participants did not include queries about family income, we used the average income of
431	each participant's residential ZIP code obtained from US Census Business Patterns data (70)
432	as a surrogate for this variable.

433

434 Data-driven ExposurE Profile extraction (DEEP) 435 To identify multi-air toxic exposure profiles associated with asthma outcomes, we 436 developed a data-driven method called Data-driven ExposurE Profile extraction (DEEP) 437 (Figure 1). DEEP is inspired by a simpler method that we previously used to identify multi-air 438 toxic combinations associated with children's cognitive skills (15). 439 In the first stage of DEEP, exposure combinations are identified using eXtreme Gradient 440 Boosting (XGBoost) (33), an algorithm that uses an ensemble method to iteratively learn 441 decision trees and generally performs well at prediction tasks. XGBoost generally yields 442 strong predictive power (71, 72) due to its use of multiple optimization methods, including 443 regularization and gradient boosting, which reduces overfitting of models to training data. 444 Specifically, the full exposure dataset was randomly split 100 times into training and test 445 sets in an 80:20 ratio. For each split, an XGBoost model consisting of 100 decision trees was 446 learned from the training set to predict the outcome under consideration. This model was 447 then applied to and evaluated on the corresponding test set in terms of the Area Under the 448 ROC curve (AUC score(35)). The overall predictability of the target outcome was evaluated 449 in terms of the average value of the AUC scores across the 100 training/test splits. 450 The decision trees constituting each XGBoost model contain internal decision nodes, 451 edges, and leaf nodes to represent how the value of an outcome could be predicted based

452 on air toxic levels. Figures 4-6 show several trees derived in the current work. Each decision 453 node in these trees contains an air toxic and a threshold value for its level. It is also 454 connected by two edges representing the decisions made depending on whether an 455 individual's exposure was higher or lower than the threshold. Each of these edges is 456 connected to either the next decision node or a leaf node. A leaf node determines the value 457 of the outcome for the individual with the exposure profile represented by the decision path 458 taken to reach it. Each decision and leaf node also represents a subpopulation of the cohort 459 exposed to the air toxics on the path taken to reach it. Candidate multi-air toxic 460 combinations are then defined as the air toxics and thresholds in the decision nodes 461 constituting the paths from the root of a tree to the leaf nodes. We calculated the frequency 462 of each combination as the number of XGBoost models (out of 100) where it was included in 463 at least one of the constituent trees, and set of threshold of 10 to identify the most relevant 464 combinations. Note that, if two or more variables are highly correlated, and thus similarly 465 associated with the outcome, a key characteristic of the decision trees in the XGBoost 466 model is that they will include only one of these variables as an internal decision node. Thus, 467 unlike traditional regression models, XGBoost is not as adversely affected by collinearity 468 among the input variables. Furthermore, DEEP executes XGBoost 100 times on randomly 469 selected training sets, different selections of these variables may be included in the different 470 trees inferred, thus enhancing the coverage of the air toxic profiles.

471	In the second stage of DEEP, a multivariable linear regression model is built to assess
472	the association of a candidate combination with the target outcome, adjusted for covariates.
473	The asthma outcome is the dependent variable in this model, while the air toxic
474	combination and covariates are its independent variables. The variable representing the
475	combination takes a value of 1 for individuals exposed to it, determined using the threshold
476	values of the constituent air toxics, and 0 otherwise. One model is built for each outcome
477	and candidate combination, yielding the odds ratio (OR) denoting the strength of the
478	association between the two. The p-values of all the associations are converting into false
479	discovery rates (FDRs) after correcting for multiple hypothesis testing using the
480	Benjamini-Hochberg method (36). In this study, significant associations were identified as
481	those with FDR≤0.05.
482	To assess potential synergy between members of air toxic combinations associated
483	with asthma outcomes, we conducted statistical tests for interactions. Interactions between
484	pairs of air toxics were assessed through additional multivariable regression models where
485	the outcome was the dependent variable and predictors included the levels of the two
486	toxics, their product as a representative of their interaction, and covariates. For
487	combinations with two air toxics, this regression model was inferred from the whole cohort,
488	while for combinations with three air toxics, analyses were conducted for the last two toxics
489	on the sample meeting the threshold for the first toxic level in the combination. A significant

interaction was identified if the	p-value of the interaction terr	n in the model was lower than

491 0.05.

490

- 492 The DEEP framework is implemented in the Python programming language (71). The
- 493 XGBoost, model evaluation (AUC score calculation) and regression components are
- 494 implemented using the xgboost (33), scikit-learn (72) and statsmodels (73) Python packages
- 495 respectively.
- 496

497 Study Approval

- 498 The study was approved by the Mount Sinai Institutional Review Board, New York, USA.
- 499 Parents of participants provided written informed consent.
- 500

501 Author contributions

- 502 HLH, PC, GP and SB conceived the study. GP and SB supervised the work. YCL, HLH, PC, ZA,
- and YC managed and analyzed the data. YCL and HLH drafted the manuscript. All the
- authors reviewed, edited, and approved the manuscript. Order among co-first authors was
- 505 determined based on contribution to results generation.

506

507 Acknowledgements

508	This work was supported by a	pilot grant from the Departr	ment of Genetics and Genomic
-----	------------------------------	------------------------------	------------------------------

- 509 Sciences at Mount Sinai and NIH grants R01 HL147328, R01 Al118833, UG3 OD023337,
- 510 R01HG011407-01A1, and P30 ES23515. It was also supported in part through the
- 511 computational resources provided by Scientific Computing at the Icahn School of Medicine
- at Mount Sinai. We thank Alfin Vicencio of the Mount Sinai Hospital System for his
- 513 assistance with cohort recruitment and Jeanette Stingone of Columbia University for her
- 514 technical advice.
- 515

516 **Conflicts of interest**

517 The authors have declared that no conflict of interest exists.

518 **References**

519 1. United States Environmental Protection Agency. About Urban Air Toxics 520 https://www.epa.gov/urban-air-toxics/about-urban-air-toxics. Accessed 8/12/2021. Walters GI, Robertson AS, Moore VC, and Burge PS. Occupational asthma caused by 521 2. 522 acrylic compounds from SHIELD surveillance (1989-2014). Occup Med (Lond). 523 2017;67(4):282-9. 524 North ML, Takaro TK, Diamond ML, and Ellis AK. Effects of phthalates on the 3. 525 development and expression of allergic disease and asthma. Annals of allergy, asthma 526 & immunology : official publication of the American College of Allergy, Asthma, & 527 Immunology. 2014;112(6):496-502. 4. 528 Dumas O, Despreaux T, Perros F, Lau E, Andujar P, Humbert M, et al. Respiratory 529 effects of trichloroethylene. Respiratory medicine. 2018;134:47-53. 530 5. Schenker MB, and Jacobs JA. Respiratory effects of organic solvent exposure. 531 *Tubercle and lung disease : the official journal of the International Union against* 532 Tuberculosis and Lung Disease. 1996;77(1):4-18. 533 6. Nurmatov UB, Tagiyeva N, Semple S, Devereux G, and Sheikh A. Volatile organic 534 compounds and risk of asthma and allergy: a systematic review. *European respiratory* review : an official journal of the European Respiratory Society. 535 536 2015;24(135):92-101. 537 7. Rumchev K, Spickett J, Bulsara M, Phillips M, and Stick S. Association of domestic 538 exposure to volatile organic compounds with asthma in young children. Thorax. 539 2004;59(9):746-51. 540 8. Weisel CP. Assessing exposure to air toxics relative to asthma. Environ Health 541 Perspect. 2002;110 Suppl 4:527-37. 542 9. Ye D, Klein M, Chang HH, Sarnat JA, Mulholland JA, Edgerton ES, et al. Estimating 543 Acute Cardiorespiratory Effects of Ambient Volatile Organic Compounds. 544 Epidemiology. 2017;28(2):197-206. 545 10. Rosa MJ, Jung KH, Perzanowski MS, Kelvin EA, Darling KW, Camann DE, et al. 546 Prenatal exposure to polycyclic aromatic hydrocarbons, environmental tobacco smoke 547 and asthma. Respiratory medicine. 2011;105(6):869-76. 11. 548 Ran J, Kioumourtzoglou MA, Sun S, Han L, Zhao S, Zhu W, et al. Source-Specific 549 Volatile Organic Compounds and Emergency Hospital Admissions for 550 Cardiorespiratory Diseases. International journal of environmental research and 551 public health. 2020;17(17). 552 12. Delfino RJ. Epidemiologic evidence for asthma and exposure to air toxics: linkages 553 between occupational, indoor, and community air pollution research. Environmental 554 health perspectives. 2002;110 Suppl 4:573-89.

555	13.	Bably M, Arif AA, and Post A. Prenatal use of cleaning and scented products and its
556		association with childhood asthma, asthma symptoms, and mental health and
557		developmental comorbidities. The Journal of asthma : official journal of the
558		Association for the Care of Asthma. 2021;58(1):46-51.
559	14.	Adgent MA, Carroll KN, Hazlehurst MF, Loftus CT, Szpiro AA, Karr CJ, et al. A
560		combined cohort analysis of prenatal exposure to phthalate mixtures and childhood
561		asthma. Environment international. 2020;143:105970.
562	15.	Stingone JA, Pandey OP, Claudio L, and Pandey G. Using machine learning to
563		identify air pollution exposure profiles associated with early cognitive skills among
564		U.S. children. Environ Pollut. 2017;230:730-40.
565	16.	Patel CJ. Analytic Complexity and Challenges in Identifying Mixtures of Exposures
566		Associated with Phenotypes in the Exposome Era. Curr Epidemiol Rep.
567		2017;4(1):22-30.
568	17.	Choi H, Schmidbauer N, Sundell J, Hasselgren M, Spengler J, and Bornehag CG.
569		Common household chemicals and the allergy risks in pre-school age children. <i>PloS</i>
570		one. 2010;5(10):e13423.
571	18.	Oakes M, Baxter L, and Long TC. Evaluating the application of multipollutant
572		exposure metrics in air pollution health studies. Environ Int. 2014;69:90-9.
573	19.	Khreis H, Kelly C, Tate J, Parslow R, Lucas K, and Nieuwenhuijsen M. Exposure to
574		traffic-related air pollution and risk of development of childhood asthma: A
575		systematic review and meta-analysis. Environ Int. 2017;100:1-31.
576	20.	Esposito S, Tenconi R, Lelii M, Preti V, Nazzari E, Consolo S, et al. Possible
577		molecular mechanisms linking air pollution and asthma in children. BMC Pulm Med.
578		2014;14:31.
579	21.	Orellano P, Quaranta N, Reynoso J, Balbi B, and Vasquez J. Effect of outdoor air
580		pollution on asthma exacerbations in children and adults: Systematic review and
581		multilevel meta-analysis. PLoS One. 2017;12(3):e0174050.
582	22.	Edwards SC, Jedrychowski W, Butscher M, Camann D, Kieltyka A, Mroz E, et al.
583		Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children's
584		intelligence at 5 years of age in a prospective cohort study in Poland. Environ Health
585		Perspect. 2010;118(9):1326-31.
586	23.	Gehring U, Wijga AH, Hoek G, Bellander T, Berdel D, Bruske I, et al. Exposure to
587		air pollution and development of asthma and rhinoconjunctivitis throughout childhood
588		and adolescence: a population-based birth cohort study. Lancet Respir Med.
589		2015;3(12):933-42.
590	24.	Chang HH, Pan A, Lary DJ, Waller LA, Zhang L, Brackin BT, et al. Time-series
591		analysis of satellite-derived fine particulate matter pollution and asthma morbidity in
592		Jackson, MS. Environ Monit Assess. 2019;191(Suppl 2):280.

593	25.	Brokamp C, Jandarov R, Rao MB, LeMasters G, and Ryan P. Exposure assessment
594		models for elemental components of particulate matter in an urban environment: A
595		comparison of regression and random forest approaches. Atmos Environ (1994).
596		2017;151:1-11.
597	26.	Coker E, Liverani S, Ghosh JK, Jerrett M, Beckerman B, Li A, et al. Multi-pollutant
598		exposure profiles associated with term low birth weight in Los Angeles County.
599		Environ Int. 2016;91:1-13.
600	27.	Deng H, Urman R, Gilliland FD, and Eckel SP. Understanding the importance of key
601		risk factors in predicting chronic bronchitic symptoms using a machine learning
602		approach. BMC Med Res Methodol. 2019;19(1):70.
603	28.	Centers for Disease Control and Prevention. Measures to Identify and Track Racial
604		Disparities in Childhood Asthma: Prevalence and Outcome Measures. July 14, 2016.
605		Available at
606		https://www.cdc.gov/asthma/asthma_disparities/outcome_measures.htm#anchor_153
607		2268838154, accessed 8/10/2021.
608	29.	Gliklich RE, Castro M, Leavy MB, Press VG, Barochia A, Carroll CL, et al.
609		Harmonized outcome measures for use in asthma patient registries and clinical
610		practice. The Journal of allergy and clinical immunology. 2019;144(3):671-81 e1.
611	30.	Covar RA, Fuhlbrigge AL, Williams P, and Kelly HW. The Childhood Asthma
612		Management Program (CAMP): Contributions to the Understanding of Therapy and
613		the Natural History of Childhood Asthma. Current respiratory care reports.
614		2012;1(4):243-50.
615	31.	United States Environmental Protection Agency. National-Scale Air Toxics
616		Assessment. Washington, DC: U.S. Environmental Protection Agency. 2014.
617		Available at https://www.epagov/national-air-toxics-assessment, accessed 12/10/2020.
618	32.	Do AN, Chun Y, Grishina G, Grishin A, Rogers AJ, Raby BA, et al. Network study of
619		nasal transcriptome profiles reveals master regulator genes of asthma. J Allergy Clin
620		Immunol. 2021;147(3):879-93.
621	33.	Tianqi Chen CG. XGBoost: A Scalable Tree Boosting System. In Proceedings of the
622		22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
623		Mining Association for Computing Machinery, New York, NY, USA. 2016:785–94.
624	34.	Nathan RA, Sorkness CA, Kosinski M, Schatz M, Li JT, Marcus P, et al.
625		Development of the asthma control test: a survey for assessing asthma control. The
626		Journal of allergy and clinical immunology. 2004;113(1):59-65.
627	35.	Lever J, Krzywinski M, and Altman N. Classification evaluation. Nature Methods.
628		2016;13(8):603-4.

629	36.	Benjamini Y, and Hochberg Y. Controlling the False Discovery Rate: A Practical and
630		Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series
631		<i>B (Methodological)</i> . 1995;57(1):289-300.
632	37.	Chin JY, Godwin C, Parker E, Robins T, Lewis T, Harbin P, et al. Levels and sources
633		of volatile organic compounds in homes of children with asthma. Indoor air.
634		2014;24(4):403-15.
635	38.	Gahleitner F, Guallar-Hoyas C, Beardsmore CS, Pandya HC, and Thomas CP.
636		Metabolomics pilot study to identify volatile organic compound markers of childhood
637		asthma in exhaled breath. Bioanalysis. 2013;5(18):2239-47.
638	39.	Delfino RJ, Gong H, Linn WS, Hu Y, and Pellizzari ED. Respiratory symptoms and
639		peak expiratory flow in children with asthma in relation to volatile organic
640		compounds in exhaled breath and ambient air. J Expo Anal Environ Epidemiol.
641		2003;13(5):348-63.
642	40.	Ferm RJ. The Chemistry Of Carbonyl Sulfide. Chemical Reviews. 1957;57(4):621-40.
643	41.	Moghtaderi M, Ashraf MA, Moghtaderi T, Teshnizi SH, and Nabavizadeh SH. Heavy
644		metal concentration in classroom dust samples and its relationship with childhood
645		asthma: a study from Islamic Republic of Iran. Eastern Mediterranean health journal
646		= La revue de sante de la Mediterranee orientale = al-Majallah al-sihhiyah li-sharq
647		al-mutawassit. 2020;26(5):594-601.
648	42.	Carder M, Seed MJ, Money A, Agius RM, and van Tongeren M. Occupational and
649		work-related respiratory disease attributed to cleaning products. Occup Environ Med.
650		2019;76(8):530-6.
651	43.	Hsieh CY, Jung CR, Lin CY, and Hwang BF. Combined exposure to heavy metals in
652		PM2.5 and pediatric asthma. J Allergy Clin Immunol. 2020.
653	44.	Andersson M, Backman H, Nordberg G, Hagenbjork A, Hedman L, Eriksson K, et al.
654		Early life swimming pool exposure and asthma onset in children - a case-control
655		study. Environ Health. 2018;17(1):34.
656	45.	New Jersey Department of Health. Hazardous Substance Fact Sheet: Triethylamine.
657		2010. Available at https://nj.gov/health/eoh/rtkweb/documents/fs/1907.pdf, accessed
658		8/16/2021.
659	46.	Mukherjee M, Cingolani E, Pritchard DI, and Bosquillon C. Enhanced expression of
660		Organic Cation Transporters in bronchial epithelial cell layers following insults
661		associated with asthma - Impact on salbutamol transport. Eur J Pharm Sci.
662		2017;106:62-70.
663	47.	Laborde-Casterot H, Rosenberg N, Dupont P, and Garnier R. Is the incidence of
664		aliphatic amine-induced occupational rhinitis and asthma underestimated? Am J Ind
665		Med. 2014;57(12):1303-10.

666	48.	Ohara T, Sato T, Shimizu N, Prescher G, Schwind H, Weiberg O, et al. Ullmann's
667		Encyclopedia of Industrial Chemistry. 2020:1-21.
668	49.	Peng C-H, Fryd M, and Wayland BB. Organocobalt Mediated Radical Polymerization
669		of Acrylic Acid in Water. Macromolecules. 2007;40(19):6814-9.
670	50.	Wang X, Schmidt F, Hanaor D, Kamm PH, Li S, and Gurlo A. Additive
671		Manufacturing of Ceramics from Preceramic Polymers: A Versatile
672		Stereolithographic Approach Assisted by Thiol-Ene Click Chemistry. Additive
673		Manufacturing. 2019;27.
674	51.	Pozdeeva NN, and Denisov ET. Mechanism of hydroquinone-inhibited oxidation of
675		acrylic acid and methyl methacrylate.
676	52.	Rossberg M, Lendle W, Pfleiderer G, Tögel A, Dreher E-L, Langer E, et al.
677		Ullmann's Encyclopedia of Industrial Chemistry. 2006.
678	53.	Agency for Toxic Substances and Disease Registry. Toxicological Profile for
679		1,1-Dichloroethane. U.S. Department of Health and Human Services, Atlanta, GA.;
680		1990.
681	54.	Fiserova-Bergerova V, Tichy M, and Di Carlo FJ. Effects of biosolubility on
682		pulmonary uptake and disposition of gases and vapors of lipophilic chemicals. Drug
683		Metab Rev. 1984;15(5-6):1033-70.
684	55.	Holder JW. Physical and physicochemical factors effecting transport of
685		chlorohydrocarbon gases from lung alveolar air to blood as measured by the causation
686		of narcosis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev.
687		2012;30(1):42-80.
688	56.	Becher R, Hongslo JK, Jantunen MJ, and Dybing E. Environmental chemicals
689		relevant for respiratory hypersensitivity: the indoor environment. Toxicol Lett.
690		1996;86(2-3):155-62.
691	57.	Sivertsen B, and Clench-Aas J. Exposure to environmental chemicals relevant for
692		respiratory hypersensitivity: European aspects. Toxicol Lett. 1996;86(2-3):143-53.
693	58.	Schwela D. Exposure to environmental chemicals relevant for respiratory
694		hypersensitivity: global aspects. Toxicol Lett. 1996;86(2-3):131-42.
695	59.	Triggiani M, Loffredo S, Granata F, Staiano RI, and Marone G. Modulation of mast
696		cell and basophil functions by benzene metabolites. Curr Pharm Des.
697		2011;17(34):3830-5.
698	60.	Olumide YM, Akinkugbe AO, Altraide D, Mohammed T, Ahamefule N, Ayanlowo S,
699		et al. Complications of chronic use of skin lightening cosmetics. International Journal
700		of Dermatology. 2008;47(4):344-53.
701	61.	World Health Organization, United Nations Environment Programme on Chemical
702		Safety, International Labour Organisation. Hydroquinone: Health and Safety Guide.
703		Geneva: World Health Organization, 1996.

704	62.	George B, Schultz B, Palma T, Vette A, Whitaker D, and Williams RW. An
705		evaluation of EPA s National-Scale Air Toxics Assessment (NATA): Comparison
706		with benzene measurements in Detroit, Michigan. Atmospheric Environment.
707		2011;45:3301-8.
708	63.	Xue Z and Jia C. A Model-to-Monitor Evaluation of 2011 National-Scale Air Toxics
709		Assessment (NATA). Toxics. 2019;7(1).
710	64.	Garcia E, Hurley S, Nelson DO, Gunier RB, Hertz A, and Reynolds P. Evaluation of
711		the agreement between modeled and monitored ambient hazardous air pollutants in
712		California. International journal of environmental health research.
713		2014;24(4):363-77.
714	65.	United States Department of Health and Human Services National Institute of Health,
715		National Heart Lung and Blood Institute. National Asthma Education and Prevention
716		Program Expert Panel Report 3: Guidelines for the Diagnosis and Management of
717		Asthma. NIH Publication Number 08-5846. National Heart Lung and Blood Institute
718		(US), ed. Clinical Practice Guidelines. Bethesda (MD). 2007.
719	66.	Bettiol A, Gelain E, Milanesio E, Asta F, and Rusconi F. The first 1000 days of life:
720		traffic-related air pollution and development of wheezing and asthma in childhood. A
721		systematic review of birth cohort studies. Environmental health : a global access
722		science source. 2021;20(1):46.
723	67.	Gehring U, Wijga AH, Koppelman GH, Vonk JM, Smit HA, and Brunekreef B. Air
724		pollution and the development of asthma from birth until young adulthood. Eur
725		<i>Respir J.</i> 2020;56(1).
726	68.	Hsu HH, Chiu YH, Coull BA, Kloog I, Schwartz J, Lee A, et al. Prenatal Particulate
727		Air Pollution and Asthma Onset in Urban Children. Identifying Sensitive Windows
728		and Sex Differences. Am J Respir Crit Care Med. 2015;192(9):1052-9.
729	69.	Weitekamp Chelsea A, Lein M, Strum M, Morris M, Palma T, Smith D, et al. An
730		Examination of National Cancer Risk Based on Monitored Hazardous Air Pollutants.
731		Environmental health perspectives. 2021;129(3):037008.
732	70.	United States Census Bureau. United States Census 2016. ZIP Codes Business
733		Patterns 2016 Data. Available at
734		https://www2.census.gov/programs-surveys/cbp/datasets/2016/: Accessed 5/28/2020.
735	71.	Oliphant TE. Python for Scientific Computing. Computing in Science & Engineering.
736		2007;9(3):10-20.
737	72.	Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
738		Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research.
739		2011;12:2825-30.
740	73.	Seabold S, and Perktold J. Proceedings of the 9th Python in Science Conference.
741		Austin, TX. 2010:61.

Figure 1: **Study overview.** Exposure data for over a hundred air toxics from the US Environmental Protection Agency's National Air Toxic Assessment (NATA) database were geocoded to Airway in Asthma (ARIA) cohort participants with mild to severe persistent asthma (n=151), based on participants' residential ZIP code. The Data-driven ExposurE Profile extraction (DEEP) method developed in this study was then applied to the air toxic data to identify multi-air toxic combinations associated with three childhood asthma outcomes: use of prescribed daily asthma controller medication, lifetime emergency department visit for asthma, and lifetime overnight hospitalization for asthma. In the first stage of DEEP, multi-air toxic combinations were identified via XGBoost models consisting of decision trees. In the second stage, multivariable logistic regression models were used to identify air toxic combinations significantly associated with childhood asthma outcomes after adjustment for age, gender, race/ethnicity, and family income. (Some images in this figure were obtained from www.flaticon.com and were made by Wanicon, Freepik and Flat Icons.)

Outcomes	Air.toxics		OR [95% CI]	FDR
Daily Controller Medication	Acrylic acid		2.10 [1.45, 3.04]	<0.01
	Hexachlorobenzene		2.03 [1.38, 2.99]	<0.01
	Benzidine		1.92 [1.25, 2.94]	0.01
	Phenol		1.89 [1.23, 2.90]	0.02
	Polychlorinated biphenyls		1.81 [1.24, 2.65]	0.01
	Acetamide		1.69 [1.17, 2.43]	0.02
	Cresol cresylic acid		1.68 [1.15, 2.44]	0.02
	Chlorine		1.64 [1.11, 2.42]	0.04
	Pentachlorophenol		1.56 [1.08, 2.25]	0.05
Emergency Room Visit	Mercury compounds		2.65 [1.43, 4.93]	0.01
	Pentachlorophenol	!	1.75 [1.16, 2.64]	0.03
	Polychlorinated biphenyls		1.72 [1.20, 2.47]	0.02
	Beryllium compounds		1.67 [1.14, 2.44]	0.03
				0.00
Overnight Hospitalization			1.87 [1.16, 3.01]	0.03
			1.85 [1.23, 2.77]	0.01
			1.82 [1.10, 3.00]	0.05
	Hydrochionic acid		1.81 [1.20, 2.74]	0.02
	Trickleresthulene		1.79 [1.12, 2.89]	0.04
			1.79 [1.12, 2.88]	0.04
			1./0[1.14, 2./4]	0.03
	Arsenic compounds		1.65 [1.08, 2.51]	0.05
		1 2 4 8 OR	i	

Figure 2: Air toxics individually associated with childhood asthma outcomes after adjustment for age, gender, race/ethnicity, and family income in ARIA cohort participants with persistent asthma (n=151). For each outcome and air toxic, the strength of the association is shown in terms of its odds ratio (OR), 95% confidence interval (CI), and false discovery rate (FDR). P-values for individual air toxics were obtained from multivariable logistic regression models and then adjusted for multiple hypothesis testing using the Benjamini-Hochberg procedure, yielding FDR values.

Daily Controller Medication Acr Hex Acr	ylic acid & Cobalt compounds		3.19 [1.74, 5.88]	<0.01
Hex	rachlorohenzene & Dimethyl phthalate			
Acr			2.96 [1.46, 6.03]	0.01
	ylic acid & Acetophenone		2.87 [1.68, 4.91]	<0.01
Acr	ylic acid & Ethyl chloride		2.55 [1.62, 4.01]	<0.01
Acr	ylic acid & 1,1,1-Trichloroethane	! → ■→	2.50 [1.61, 3.88]	<0.01
Acr	ylic acid & Dimethyl phthalate		2.16 [1.44, 3.23]	<0.01
Acr	ylic acid & 2,4-Toluene diisocyanate		1.98 [1.35, 2.90]	<0.01
Acr	ylic acid & 1,3-Dichloropropene		1.91 [1.29, 2.81]	<0.01
Tolu	uene & Phosphorus		1.81 [1.16, 2.84]	0.03
Emergency Room Visit Ace	etaldehyde & Carbon disulfide & Polychlorinated biphenyls		3.10 [1.70, 5.68]	<0.01
Acr	ylic acid & Hydroquinone		2.73 [1.55, 4.81]	<0.01
Acr	ylamide & Mercury compounds		2.45 [1.35, 4.47]	0.02
Overnight Hospitalization Hyd	droquinone & Ethylidene dichloride		2.03 [1.35, 3.06]	<0.01
Car	rbonyl sulfide & Glycol ethers	! 	1.96 [1.26, 3.04]	0.01
Eth	ylidene dichloride & Acrylic acid		1.82 [1.22, 2.71]	0.02
Hyd	droquinone & Trichloroethylene		1.77 [1.16, 2.69]	0.03
1,4-	-Dioxane & Trichloroethylene		1.69 [1.13, 2.52]	0.03
Eth	ylidene dichloride & 1,4-Dioxane		1.66 [1.16, 2.37]	0.02
Car	rbonyl sulfide & Acrylic acid		1.65 [1.15, 2.36]	0.02
Hyd	droquinone & Methyl methacrylate		1.60 [1.09, 2.37]	0.05

Figure 3: **Multi-air toxic combinations associated with childhood asthma outcomes after adjustment for age, gender, race/ethnicity, and family income in ARIA cohort participants with persistent asthma (n=151).** For each outcome and combination, the strength of the association is shown in terms of its odds ratio (OR), 95% confidence interval (CI), and false discovery rate (FDR). The P-values for multi-air toxic combinations were obtained from multivariable logistic regression models and then adjusted for multiple hypothesis testing using the Benjamini-Hochberg procedure, yielding FDR values.

Figure 4: A sample decision tree learned by DEEP to predict daily asthma controller medication using NATA-derived air toxic data geocoded to subjects (n=149). Each node in the tree indicates the number of participants satisfying the air toxic decision path until that point and the percentage of participants with that outcome. The sample corresponding to each node is stratified into two subpopulations based on the air toxic and its threshold associated with the node. The multi-air toxic combination acrylic acid & cobalt compounds, which was the most significantly associated with this outcome, is highlighted in red.

Figure 5: A sample decision tree learned by DEEP to predict lifetime emergency room visit for asthma from NATA-derived air toxic exposure data geocoded to each subject (n=151). Each node in the tree indicates the number of participants satisfying the air toxic decision path until that point and the percentage of participants with that outcome. The sample corresponding to each node is stratified into two subpopulations based on the air toxic and its threshold associated with the node. The multi-air toxic combination acetaldehyde & carbon disulfide & polychlorinated biphenyls, which was the most significantly associated with this outcome, is highlighted in red.

Figure 6: A sample decision tree learned by DEEP to predict lifetime overnight hospitalization for asthma from NATA-derived air toxic data geocoded to each participant (n=151). Each node in the tree indicates the number of participants satisfying the air toxic decision path until that point and the percentage of subjects with that outcome. The sample corresponding to each node is stratified into two subpopulations based on the air toxic and its threshold associated with the node. The multi-air toxic combination hydroquinone & ethylidene dichloride, which was the most significantly associated with this outcome, is highlighted in red.

Table 1: Characteristics of the ARIA cohort participants included in this study. Mean (standard

deviation) and number (%) are shown for continuous and categorical variables respectively. Characteristics stratified by asthma outcome are also shown. P-values comparing subjects with and without the outcome are shown from two-sided student t-test for continuous variables and a chi-squared test for categorical variables. *Two participants did not provide information about their daily controller medication use.

	All	Daily Controller Medication*		Emergency Room Visit			Overnight Hospitalization			
	(n=151)	Yes (n=84)	No (n=65)	p-value	Yes (n=103)	No (n=48)	p-value	Yes (n=51)	No (n=100)	p-value
Age, years	12.0 (3.2)	11.5 (3.2)	12.6 (3.1)	0.048	11.7 (3.3)	12.4 (2.9)	0.23	12.1 (3.2)	11.9 (3.2)	0.69
Gender, female	62 (41.1%)	33 (39.3%)	29 (44.6%)	0.63	41 (39.8%)	21 (43.8%)	0.78	19 (37.3%)	43 (43%)	0.61
Race/ethnicity				0.50			0.03			0.07
Asian	6 (4.0%)	4 (4.8%)	2 (3.1%)		3 (2.9%)	3 (6.3%)		1 (2.0%)	5 (5.0%)	
Black	26 (17.2%)	13 (15.5%)	13 (20%)		20 (19.4%)	6 (12.5%)		12 (23.5%)	14 (14.0%)	
White	57 (37.7%)	33 (39.3%)	24 (36.9%)		32 (31.1%)	25 (52.1%)		12 (23.5%)	45 (45.0%)	
Latino	51 (33.8%)	25 (29.8%)	24 (36.9%)		42 (40.8%)	9 (18.8%)		23 (45.1%)	28 (28.0%)	
Mixed	10 (6.6%)	8 (9.5)	2 (3.1%)		5 (4.9%)	5 (10.4%)		3 (5.9%)	7 (7.0%)	
Not Reported	1 (0.7%)	1 (1.2%)	0 (0%)		1 (1.0%)	0 (0.0%)		0 (0%)	1 (1.0%)	
	49349.3	48954.8	49961.7	0.75	48870.9	50375.8	4557 0.63 (1482	45576.7	51273.3	0.053
income, 055	(18725.8)	(18701.7)	(19017.3)		(19414.5)	(17109.8)		(14822.9)	(20161.2)	
Asthma Control Test (ACT) score	16.8 (3.9)	16.4 (3.9)	17.3 (4.0)	0.16	16.2 (4.0)	18.0 (3.5)	9.54*10 ⁻³	15.9 (4.3)	17.3 (3.7)	0.05
FEV1%	87.1 (17.5)	85.5 (17.7)	88.6 (17.3)	0.32	86.2 (18.0)	88.6 (16.6)	0.45	82.1 (19.7)	89.4 (15.9)	0.04
FEV1/FVC	79.6 (10.4)	78.3 (10.5)	80.8 (10.2)	0.17	79.4 (10.9)	80.0 (9.5)	0.77	77.7 (10.5)	80.4 (10.3)	0.17
Regular use of asthma medicine										
Beta agonist	145 (96.0%)	83 (98.8%)	60 (92.3%)	0.11	102 (99.0%)	43 (89.6%)	0.02	51 (100%)	94 (94.0%)	0.18
Inhaled corticosteroid (ICS)	39 (25.8%)	35 (41.7%)	3 (4.6%)	7.19*10 ⁻⁷	27 (26.2%)	12 (25.0%)	1	10 (19.6%)	29 (29.0%)	0.29
Combined ICS/LABA	31 (20.5%)	30 (35.7%)	0 (0%)	2.16*10 ⁻⁷	28 (27.2%)	3 (6.3%)	5.97*10 ⁻³	23 (45.1%)	8 (8.0%)	2.98*10 ⁻⁷
Leukotriene receptor antagonist	30 (19.9%)	29 (34.5%)	1 (1.5%)	1.81*10 ⁻⁶	23 (22.3%)	7 (14.6%)	0.37	19 (37.3%)	11 (11.0%)	3.08*10 ⁻⁴
Omalizumab	2 (1.3%)	1 (1.2%)	1 (1.5%)	1	2 (1.9%)	0 (0.0%)	0.84	0 (0.0%)	2 (2.0%)	0.79

Table 2: Air toxics identified by DEEP as significantly associated with at least one of the three asthmaoutcomes, either individually or in combination with other air toxics. D: Air toxic associated with daily asthmacontroller medication. E: Air toxic associated with lifetime emergency room visit for asthma. O: Air toxicassociated with lifetime overnight hospitalization for asthma.

Air toxic	Level at participant's residential ZIP code Median (IQR) values (in ng/m³)	Individually significant	Significant in combination(s)
1 1 1-trichloroethane	667 7 (120 5 1452 9)		D
1,3-dichloropropene	129 (1.75, 405.18)		D
1,4-dioxane	3.16x10 ⁻³ (1.3x10 ⁻³ , 0.18)		0
2,4-toluene diisocyanate	0.08 (7.2x10 ⁻³ , 0.15)		D
Acetaldehyde	2420.6 (1967.0, 2768.3)		Е
Acetamide	2.61x10 ⁻⁴ (1.7x10 ⁻⁴ , 9.1x10 ⁻⁴)	D, O	
Acetophenone	0.1 (0.02, 0.17)		D
Acrylamide	4.24x10 ⁻⁴ (2.5x10 ⁻⁶ , 6.6x10 ⁻³)		Е
Acrylic acid	1.27x10 ⁻³ (4.98x10 ⁻⁴ , 0.06)	D	D, E, O
Arsenic compounds	0.73 (0.49, 1.13)	0	
Benzidine	1.44x10 ⁻⁵ (1.2x10 ⁻⁵ , 2.5x10 ⁻⁵)	D	
Beryllium compounds	0.16 (0.09, 0.27)	E	
Carbon disulfide	5.66 (5.59, 9.57)		E
Carbonyl sulfide	0.03 (1.77x10 ⁻³ , 0.25)		0
Chlorine	0.91 (0.39, 1.28)	D	
Cobalt compounds	0.15 (0.10, 0.19)		D
Cresol cresylic acid	20.05 (15.1, 24.9)	D	
Dimethyl phthalate	0.07 (0.04, 0.08)		D
Ethyl chloride	8.21 (7.8x10 ⁻³ , 20.26)	0	D
Ethylidene dichloride	0.12 (0.02, 0.22)		0
Glycol ethers	12.67 (2.58, 117.36)		0
Hexachlorobenzene	1.2x10 ⁻⁶ (2.47x10 ⁻⁷ , 3.91x10 ⁻⁴)	D	D
Hydrochloric acid	208.8 (146.8, 301.7)	0	
Hydroquinone	7.3x10 ⁻³ (1.4x10 ⁻³ , 0.03)	0	E,O
Methyl methacrylate	1.62 (1.06, 2.79)		0
Mercury compounds	0.4 (0.22, 1.87)	E	Е
Pentachlorophenol	4.6x10 ⁻⁷ (0, 1.4x10 ⁻⁶)	D, E	
Phenol	3.34 (2.03, 22.35)	D	
Phosphorus	0.21 (0.11, 0.31)		D
Polychlorinated biphenyls	1.1x10 ⁻⁴ (1.2x10 ⁻⁵ , 8.8x10 ⁻³)	D,E	Е
Quinoline	0.14 (5.23x10 ⁻⁴ , 0.17)	0	
Toluene	9392 (4984.58, 21249.3)		D
Trichloroethylene	106.4 (18.1, 132.6)	0	0
Triethylamine	2.81 (1.82, 5.77)	0	

Table 3: Air toxic combinations associated with asthma outcomes with statistically significant interactions

between combination members. The p-values are for the interaction term of multivariable logistic regression models where asthma outcome was the dependent variable and independent variables included member air toxic levels, interaction term, and covariates (age, gender, race/ethnicity, family income).

Outcome	Air Toxic Combination	Interactions	P-value
Daily	Acrylic acid &	Acrylic acid &	0.02
Controller	Dimethyl phthalate	Dimethyl phthalate	
Medication			
	Acrylic acid &	Acrylic acid &	0.02
	Cobalt compounds	Cobalt compounds	
Emergency	Acrylic acid &	Acrylic acid &	< 0.004
Room Visit	Hydroquinone	Hydroquinone	

Table 4: Demographic characteristics of children exposed and not exposed to the acrylic acid & cobalt compounds combination, which was associated with daily asthma controller medication. Mean (standard deviation) and number (%) are shown for continuous and categorical variables, respectively. Also shown are p-values for the differences between the two groups of children, calculated using a two-sided two sample student t-test for continuous variables and a chi-square test for categorical variables.

	Multi-air toxic combination: Acrylic acid & Cobalt compounds						
Variable	Total	Children exposed to	Children not exposed to	n valuo			
Vallable	(n=149)	combination (n=23)	combination (n=126)	p-value			
Age, years	12.0 (3.2)	13.7 (3.6)	11.7 (3.0)	0.02			
Gender, female	87 (58.4)	14 (60.9)	73 (57.9)	0.97			
Race/ethnicity				0.089			
Asian	6 (4.0)	0 (0.0)	6 (4.8)				
Black	26 (17.4)	5 (21.7)	21 (16.7)				
White	57 (38.3)	6 (26.1)	51 (40.5)				
Latino	49 (32.9)	8 (34.8)	41 (32.5)				
Mixed	10 (6.7)	3 (13.0)	7 (5.6)				
Not Reported	1 (0.7)	1 (4.3)	0 (0.0)				
Income, US\$	49394.0 (18846.6)	46339.2 (15671.1)	49951.7 (19318.1)	0.34			

Table 5: Demographic characteristics of children exposed and not exposed to the acetaldehyde & carbon disulfide & polychlorinated biphenyls combination, which was associated with lifetime emergency room visit for asthma. Mean (standard deviation) and number (%) are shown for continuous and categorical variables, respectively. Also shown are p-values for the differences between the two groups of children, calculated using a two-sided student t-test for continuous variables and a chi-square test for categorical variables.

	Multi-air toxic combination: Acetaldehyde & Carbon disulfide &								
	Polychlorinated biphenyls								
Variable	Total	Children exposed to	Children not exposed	n valuo					
	(n=151)	combination (n=48)	to combination (n=103)	p-value					
Age, years	12.0 (3.2)	10.0 (2.6)	12.9 (3.0)	5.34x10 ⁻⁸					
Gender, female	89 (58.9)	28 (58.3)	61 (59.2)	0.94					
Race/ethnicity				0.0046					
Asian	6 (4.0)	3 (6.2)	3 (2.9)						
Black	26 (17.2)	14 (29.2)	12 (11.7)						
White	57 (37.7)	9 (18.8)	48 (46.6)						
Latino	51 (33.8)	19 (39.6)	32 (31.1)						
Mixed	10 (6.6)	2 (4.2)	8 (7.8)						
Not Reported	1 (0.7)	1 (2.1)	0 (0.0)						
Income, US\$	49349.3 (18725.8)	44708.3 (14015.1)	51512.0 (20194.5)	0.019					

Table 6: Demographic characteristics of children exposed and not exposed to the hydroquinone & ethylidene dichloride combination, which was associated with lifetime overnight hospitalization for asthma. Mean (standard deviation) and number (%) are shown for the continuous and categorical variables, respectively. Also shown are p-values for the differences between the two groups of children, calculated using a two-sided student t-test for continuous variables and a chi-squared test for categorical variables.

	Multi-air toxic combination: Hydroquinone & Ethylidene dichloride					
Variable	Total (n=151)	Children exposed to	Children not exposed to	p-value		
Vallable			combination (n=134)			
Age, years	12.0 (3.2)	9.9 (2.5)	12.2 (3.2)	0.0022		
Gender, female	89 (58.9)	12 (70.6)	77 (57.5)	0.44		
Race/ethnicity				0.32		
Asian	6 (4.0)	0 (0.0)	6 (4.5)			
Black	26 (17.2)	2 (11.8)	24 (17.9)			
White	57 (37.7)	4 (23.5)	53 (39.6)			
Latino	51 (33.8)	10 (58.8)	41 (30.6)			
Mixed	10 (6.6)	1 (5.9)	9 (6.7)			
Not Reported	1 (0.7)	0 (0.0)	1 (0.7)			
Income, US\$	49349.3 (18725.8)	40226.8 (6929.4)	50506.6 (19420.4)	8.26x10 ⁻⁵		