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Introduction
Air toxics are hazardous air pollutants that cause or may cause 
serious health effects (1). They are well-established detriments 
to human respiratory health, especially for children (2–8). In par-
ticular, exposure to air toxics early in life predisposes children to 
asthma, one of the most prevalent diseases in this demographic 
group. Epidemiological studies have linked prenatal and early-life 
exposure to air toxics with childhood wheeze, asthma, and altered 
lung function (6–14).

Although air toxics are generally analyzed and regulated as 
individual chemicals (6), we are exposed to combinations of air 
toxics in ambient air. The specific combinations of individual air 
toxics that influence childhood asthma have not been studied 
adequately. Assessing the respiratory health effects of multiple 
air toxics is challenging for several reasons (7, 15). First, it is logis-
tically difficult and expensive to collect detailed, individualized 
exposure data for multiple air toxics using personal or local moni-
toring. Additionally, there are limited statistical methods to parse 
the effects of mixtures where individual air toxics may contribute 
only slightly to an adverse outcome but have a different impact in 
combination with other air toxics (15). As a result, few studies have 

considered exposure to air toxic mixtures and their associations 
with children’s health, including asthma (8, 15–17).

Several studies linking air toxic mixtures and health outcomes, 
as well as a prior review of 57 studies that examined air pollutants 
and their health effects, reached no consensus on the ideal meth-
ods for multi-pollutant analyses (6, 7, 15, 16, 18). A key limitation 
of the studies reviewed is that most metrics assume pure additivity 
of the effects of multiple air toxics, without consideration of syner-
gistic and/or antagonistic interactions. Because of these challeng-
es, air toxic combinations that collectively influence childhood  
asthma remain suboptimally characterized. Furthermore, identi-
fying air toxic combinations associated with health outcomes is 
also difficult because of the exponentially large number of combi-
nation subsets in a set of air toxics, i.e., 2N – 1 combinations in a set 
of N air toxics. Conventional statistical methods (19–24) and fea-
ture importance assessment using machine learning algorithms 
(16, 25–27) have not been effective for this task, since they gener-
ally assess the association of air toxics individually.

In this study, we hypothesized that exposure to combina-
tions of air toxics during early life is associated with asthma 
outcomes in later childhood. These outcomes included current 
need for daily asthma controller medication, lifetime emergency 
room visit for asthma, and lifetime overnight hospitalization for 
asthma (Figure 1). Asthma-related medication use, emergency 
room visits, and hospitalizations are frequently studied asthma 
outcomes that reflect asthma severity, control, and health care 
usage (28–30). Although some studies have reported associations 
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Children who used daily asthma controller medication (n = 
84, 56%) were younger than those who did not (n = 65; P = 0.048). 
ICSs were used most frequently, both independently and in com-
bination with LABAs. Children who had at least 1 lifetime emer-
gency room visit for asthma (n = 103, 68%) were more likely to 
self-identify as Black or Latino, had lower (P = 0.03) ACT scores 
than their counterparts who had never required an emergency  
department visit for asthma (P = 9.54 × 10–3), and were more 
likely to be taking combination ICS/LABA as their daily asthma 
controller medication (P = 5.97 × 10–3). Children who had been 
hospitalized overnight for asthma in their lifetime (n = 51, 34%) 
had significantly lower FEV1% on spirometry (P = 0.04), and 
higher rates of ICS/LABA (P = 2.98 × 10–7) and leukotriene recep-
tor antagonist (P = 3.08 × 10–4) use for daily asthma treatment, 
compared with the participants with asthma who had never been 
hospitalized overnight for asthma.

Air toxic characteristics. Ambient annual average concentra-
tions for over a hundred air toxics based on emissions inventories 
and computer simulation models are publicly available for each 
US census tract in the EPA’s NATA database (31). We mapped 
the available toxic levels to the residential zip code for each child 
in our cohort. Ninety-four zip codes spanning 443 square miles 
across New York, New Jersey, and Connecticut were represented 
in this cohort. We used the closest calendar year of NATA data 
available subsequent to a child’s birth date. We retained only the 
air toxics whose levels were available for all the participants in the 
mapped data sets, yielding 125 air toxics for analysis.

DEEP-enabled identification of combinations of air toxics associ-
ated with childhood asthma. We then applied DEEP to identify air 
toxic combinations associated with each of the 3 childhood asth-
ma outcomes, namely the need for daily asthma controller med-
ication, lifetime emergency room visit for asthma, and lifetime 
overnight hospitalization for asthma. In the first analytical stage 
of DEEP (detailed in Methods), for each outcome, the full data 

between particular air toxics and these asthma subphenotypes (9, 
11, 12), none addressed our goal to identify combinations of air 
toxics from a large national assessment of air toxics associated 
with these asthma outcomes. We tested our hypothesis by geoc-
oding levels of 125 air toxics from the US EPA’s NATA (31), one of 
the richest sources of multi–air toxic profiling across the United 
States, to the residential addresses of children with asthma from 
our ARIA study (32) to map each child’s exposure to air toxics 
during the first years of life. We addressed the challenges of com-
binatorial air toxic analysis by applying a machine learning–based 
algorithm called DEEP, which, to the best of our knowledge, is a 
novel method for this problem. DEEP uses the high-performing 
XGBoost (33) algorithm to identify air toxic combinations asso-
ciated with health outcomes. The combinations identified using 
XGBoost were then adjusted for potential confounders, including 
age, sex, race and ethnicity, and family income, to identify early- 
life multi–air toxic combinations, statistical interactions within 
combinations, and demographic profiles associated with adverse 
asthma outcomes in later childhood. Our approach identified  
several combinations of air toxics associated with asthma.

Results
Characteristics of the study cohort. Table 1 shows the characteristics 
of the ARIA study (32) participants with asthma examined in this 
study. These 151 children with mild to severe persistent asthma 
were recruited from the Mount Sinai Health System, New York, 
New York, USA, with informed consent from their parents/guard-
ians via an IRB-approved protocol. Participants had a mean age of 
12 years (standard deviation 3.2 years) at the time of assessment 
and were of diverse self-identified racial and ethnic backgrounds 
(Table 1). Their asthma was generally not well controlled, with a 
mean score on the ACT (34) of 16.8 (maximum value 25 represent-
ing optimal control) and 96% of the cohort reporting regular use 
of a short-acting β-agonist rescue inhaler.

Figure 1. Study overview. Exposure data for over a hundred air toxics from the US Environmental Protection Agency’s (EPA) National Air Toxic Assessment 
(NATA) database were geocoded to AiRway in Asthma (ARIA) cohort participants with mild to severe persistent asthma (n = 151), based on participants’ resi-
dential zip code. The Data-driven ExposurE Profile extraction (DEEP) method developed in this study was then applied to the air toxic data to identify multi–
air toxic combinations associated with 3 childhood asthma outcomes: use of prescribed daily asthma controller medication, lifetime emergency department 
visit for asthma, and lifetime overnight hospitalization for asthma. In the first stage of DEEP, multi–air toxic combinations were identified via eXtreme 
Gradient Boosting (XGBoost) models consisting of decision trees. In the second stage, multivariable logistic regression models were used to identify air toxic 
combinations significantly associated with childhood asthma outcomes after adjustment for age, sex, race and ethnicity, and family income. (Some images 
in this figure were obtained from the open-source collection at https://www.flaticon.com and were made by Wanicon, Freepik, and flaticon.)
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their association with the asthma outcome of interest, while adjust-
ing for age, sex, race and ethnicity, and income.

After the first XGBoost stage of DEEP, 689 profiles of air 
toxics across all the asthma outcomes were discovered. These 
sets included both individual air toxics and their combinations. 
In the second stage of DEEP, 359 of these sets were then found 
to be significantly associated (P ≤ 0.05) with the respective out-
come. After multiple-hypothesis correction by the Benjamini- 
Hochberg procedure (36), 273 air toxic profiles were found to be 
significantly associated (FDR ≤ 0.05) with at least 1 of the 3 out-
comes. Our goal was to identify air toxic combinations whose 
increased levels are associated with adverse asthma outcomes. 
Therefore, among the significantly associated combinations, 
we focused on groups that included air toxics with levels higher 
than threshold. Among these final determined combinations, 
18 had 1 air toxic each (Figure 2), and 20 were multi–air toxic 
combinations (Figure 3).

Air toxic combinations associated with asthma outcomes. Twenty  
multi–air toxic combinations and 18 individual air toxics were 
found to be significantly associated with at least 1 of the 3 asthma  
outcomes. The medians and interquartile ranges (IQRs) of the 

set was randomly split 100 times into training and test sets in an 
80:20 ratio. For each split, an XGBoost model consisting of 100 
decision trees was learned from the training set and evaluated  
on the test set in terms of the area under the receiver operating 
characteristic (ROC) curve (AUC score; ref. 35).

In the second analytical stage of DEEP, we analyzed the com-
binations of toxics from the XGBoost models, identified as root-
to-leaf paths in the constituent decision trees, for each outcome. 
Note that in some cases, a combination may consist of only 1 air 
toxic if it is sufficient to predict the outcome under consideration 
for a subset of the cohort, thus giving DEEP flexibility in discovery. 
Also, in cases of multiple air toxics in these combinations, their 
sequence of appearance on the path also indicates their relative 
order of relevance to the outcome being predicted. This is because 
variables closer to the root of a decision tree have higher predictive 
power than those closer to the leaves.

Next, the frequency of each combination was calculated as the 
number of models (out of 100) where the combination was included 
in at least 1 of the constituent trees. Candidate combinations were 
then identified as those with a frequency of at least 10. These com-
binations were then used in multivariable regression models to test 

Table 1. Characteristics of the ARIA cohort participants included in this study

All Daily controller medicationA Emergency room visit Overnight hospitalization

(n = 151)
Yes 

(n = 84)
No 

(n = 65) P value
Yes 

(n = 103)
No 

(n = 48) P value
Yes 

(n = 51)
No 

(n = 100) P value
Age, years 12.0 (3.2) 11.5 (3.2) 12.6 (3.1) 0.048 11.7 (3.3) 12.4 (2.9) 0.23 12.1 (3.2) 11.9 (3.2) 0.69
Sex, female 62 (41.1%) 33 (39.3%) 29 (44.6%) 0.63 41 (39.8%) 21 (43.8%) 0.78 19 (37.3%) 43 (43%) 0.61
Race and ethnicity 0.50 0.03 0.07
 Asian 6 (4.0%) 4 (4.8%) 2 (3.1%) 3 (2.9%) 3 (6.3%) 1 (2.0%) 5 (5.0%)
 Black 26 (17.2%) 13 (15.5%) 13 (20%) 20 (19.4%) 6 (12.5%) 12 (23.5%) 14 (14.0%)
 White 57 (37.7%) 33 (39.3%) 24 (36.9%) 32 (31.1%) 25 (52.1%) 12 (23.5%) 45 (45.0%)
 Latino 51 (33.8%) 25 (29.8%) 24 (36.9%) 42 (40.8%) 9 (18.8%) 23 (45.1%) 28 (28.0%)
 Mixed 10 (6.6%) 8 (9.5) 2 (3.1%) 5 (4.9%) 5 (10.4%) 3 (5.9%) 7 (7.0%)
 Not reported 1 (0.7%) 1 (1.2%) 0 (0%) 1 (1.0%) 0 (0.0%) 0 (0%) 1 (1.0%)
Income, US$ 49,349.3 

(18,725.8)
48,954.8 
(18,701.7)

49,961.7 
(19,017.3)

0.75 48,870.9 
(19,414.5)

50,375.8 
(17,109.8)

0.63 45,576.7 
(14,822.9)

51,273.3 
(20,161.2)

0.053

Asthma Control Test 
(ACT) score

16.8 (3.9) 16.4 (3.9) 17.3 (4.0) 0.16 16.2 (4.0) 18.0 (3.5) 9.54 × 10–3 15.9 (4.3) 17.3 (3.7) 0.05

Forced expiratory volume  
in 1 second percent 
predicted (FEV1%)

87.1 (17.5) 85.5 (17.7) 88.6 (17.3) 0.32 86.2 (18.0) 88.6 (16.6) 0.45 82.1 (19.7) 89.4 (15.9) 0.04

FEV1/forced vital capacity 
(FVC)

79.6 (10.4) 78.3 (10.5) 80.8 (10.2) 0.17 79.4 (10.9) 80.0 (9.5) 0.77 77.7 (10.5) 80.4 (10.3) 0.17

Regular use of asthma 
medicine
 β-Agonist 145 (96.0%) 83 (98.8%) 60 (92.3%) 0.11 102 (99.0%) 43 (89.6%) 0.02 51 (100%) 94 (94.0%) 0.18
 Inhaled corticosteroid (ICS) 39 (25.8%) 35 (41.7%) 3 (4.6%) 7.19 × 10–7 27 (26.2%) 12 (25.0%) 1 10 (19.6%) 29 (29.0%) 0.29
 Combined ICS/long-acting 
 β-agonist (LABA)

31 (20.5%) 30 (35.7%) 0 (0%) 2.16 × 10–7 28 (27.2%) 3 (6.3%) 5.97 × 10–3 23 (45.1%) 8 (8.0%) 2.98 × 10–7

 Leukotriene receptor 
 antagonist

30 (19.9%) 29 (34.5%) 1 (1.5%) 1.81 × 10–6 23 (22.3%) 7 (14.6%) 0.37 19 (37.3%) 11 (11.0%) 3.08 × 10–4

 Omalizumab 2 (1.3%) 1 (1.2%) 1 (1.5%) 1 2 (1.9%) 0 (0.0%) 0.84 0 (0.0%) 2 (2.0%) 0.79

Mean (standard deviation) and number (%) are shown for continuous and categorical variables, respectively. Characteristics stratified by asthma outcome 
are also shown. P values comparing patients with and without the outcome are shown from 2-sided Student’s t test for continuous variables and a χ2 test for 
categorical variables. ATwo participants did not provide information about their daily controller medication use.
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Notably, acrylic acid not only was the individual air toxic most 
strongly associated with daily controller medication (Figure 2) but also 
was the first (i.e., primary) member of 7 of the 9 multi–air toxic combina-
tions associated with this outcome (Figure 3). Acrylic acid also appeared 
in 3 of the other 11 combinations associated with emergency room  
visit and overnight hospitalization for asthma (Figure 3), indicating that 
it is a major contributor to adverse asthma outcomes among children.

Three air toxic combinations were associated with lifetime 
emergency room visit for asthma, all with an OR of over 2 (Figure 
3). Acetaldehyde, acrylamide, and acrylic acid were the primary 
exposures in these combinations, despite the fact they were not 
individually significantly associated with the outcome. Several 
other air toxics in these combinations, namely carbon disulfide 
and hydroquinone, were also not individually associated with 
this outcome. These findings highlight the main strength of 
DEEP, namely its ability to identify significant multi–air toxic 
combinations, whose constituent air toxics may not be individu-
ally associated with the health outcome of interest.

Among the 8 air toxic combinations associated with lifetime 
overnight hospitalization for asthma, 1,4-dioxane, carbonyl sul-

exposure levels of the 34 air toxics included in these associations 
are shown in Table 2.

Higher levels of 17 individual air toxics were significantly 
associated with worse asthma outcomes (Figure 2). ORs for these 
associations ranged from 1.56 to 2.65. Several of the identified 
toxics are established risk factors for childhood asthma, especially  
the chemicals previously categorized as halogenated, ketones, 
and ethers (8, 37–39). Among these, the air toxics most associated 
with the outcomes were acrylic acid (OR = 2.10), mercury com-
pounds (OR = 2.65), and ethyl chloride (OR = 1.87), respectively. 
Acetamide, pentachlorophenol, and polychlorinated biphenyls 
were associated with more than 1 asthma outcome.

A major strength of DEEP is its ability to identify multi–air 
toxic combinations associated with health outcomes. Indeed, here 
DEEP revealed significant associations between higher exposure 
to 20 multi–air toxic combinations and the 3 asthma outcomes of 
interest (Figure 3). Among these, 19 combinations included 2 air 
toxics and 1 included 3. The associations of these combinations 
were generally stronger than those of the individual air toxics, 
with ORs ranging from 1.60 to 3.19 (Figure 3).

Figure 2. Air toxics individually associated with childhood asthma outcomes after adjustment for age, sex, race and ethnicity, and family income in 
ARIA cohort participants with persistent asthma (n = 151). For each outcome and air toxic, the strength of the association is shown in terms of its odds 
ratio (OR), 95% confidence interval (CI), and false discovery rate (FDR). P values for individual air toxics were obtained from multivariable logistic regres-
sion models and then adjusted for multiple hypothesis testing using the Benjamini-Hochberg procedure, yielding FDR values.
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come. Similarly, hexachlorobenzene was associated with daily  
controller medication with an OR of 2.03 (Figure 2), while 
simultaneous exposure to the combination of hexachloroben-
zene and dimethyl phthalate identified by DEEP had an OR of 
2.96 (Figure 3). This was despite the fact that there was no sig-
nificant individual association between dimethyl phthalate and 
the outcome. For the pair of toluene and phosphorus, neither 
air toxic was individually associated with daily controller medi-
cation (Figure 2), but their combination was associated with the 
outcome with an OR of 1.81 (Figure 3).

Similar cases of combinatorial effects were also seen for life-
time emergency room visit for asthma. For example, simultane-
ous exposure to polychlorinated biphenyl, acetaldehyde, and car-
bon disulfide had 3.10-fold higher odds of the outcome (Figure 3), 
while polychlorinated biphenyl’s individual effect size was sub-
stantially lower (OR = 1.72; Figure 2). Similarly, the combination 
of acrylic acid and hydroquinone was significantly associated with 
emergency room visit with an OR of 2.73 (Figure 3), but neither 
was associated with the outcome individually (Figure 2).

fide, ethylidene dichloride, hydrochloric acid, and hydroquinone 
were the primary exposures (Figure 3). Both ethylidene dichloride 
and hydroquinone appeared in 3 of these 8 combinations, indicat-
ing that these 2 chemicals may play a role in the development of 
poor asthma outcomes among children. Most other air toxics in 
these combinations (Figure 3) were largely not individually associ-
ated with this outcome (Figure 2), again supporting DEEP’s ability 
to identify multi–air toxic combinations that may not be inferred 
from single air toxic associations.

Effect sizes of multi–air toxic combinations may not be evident 
from the individual associations of their members. Some air toxics 
had relatively low effect sizes when assessed individually (Fig-
ure 2) compared with the larger ORs from combination analyses 
(Figure 3). For example, acrylic acid was associated with daily 
controller medication, with an OR of 2.10 as an individual air 
toxic (Figure 2), but the ORs of its combinations with dimethyl 
phthalate, 1,1,1-trichloroethane, ethyl chloride, acetophenone, 
and cobalt were higher (OR 2.16 to 3.19; Figure 3). Also, none 
of these 5 air toxics was individually associated with the out-

Figure 3. Multi–air toxic combinations associated with childhood asthma outcomes after adjustment for age, sex, race and ethnicity, and family income 
in ARIA cohort participants with persistent asthma (n = 151). For each outcome and combination, the strength of the association is shown in terms of its 
odds ratio (OR), 95% confidence interval (CI), and false discovery rate (FDR). P values for multi–air toxic combinations were obtained from multivariable 
logistic regression models and then adjusted for multiple hypothesis testing using the Benjamini-Hochberg procedure, yielding FDR values.
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We observed similar results for multi–air toxic combinations 
and lifetime overnight hospitalization for asthma. Exposure to 
hydroquinone was individually associated with this outcome 
with an OR of 1.79 (Figure 2), but in combination with ethylidene 
dichloride, the association was stronger (OR = 2.03; Figure 3). 
Similarly, carbonyl sulfide was not individually associated with 
this outcome (Figure 2), but it was the primary member in 2 of the 
multi–air toxic combinations found to be associated with over-
night hospitalization (Figure 3).

In summary, the above comparison of the effect sizes of the 
individual air toxic (Figure 2) and multi–air toxic (Figure 3) associa-
tions demonstrated that combinations of air toxics had effects that 
were not fully explained by simply adding together the individual 

effects from their constituents. Overall, DEEP iden-
tified 34 air toxics associated with the asthma out-
comes (Table 2), including 16 air toxics with signifi-
cant effects only as members of combinations.

Statistical interactions among members of air toxic  
combinations. To assess potential synergy between 
members of air toxic combinations associated with 
asthma outcomes, we conducted statistical tests 
for interactions. Significant statistical interactions  
detected between air toxic members within the com-
binations are shown in Table 3. Acrylic acid was the 
primary air toxic (i.e., primary branch point in the deci-
sion tree) of all the combinations with significant sta-
tistical interactions. Although other combinations did 
not reveal significant interactions, such interactions 
remain possible given the limitations of statistical 
detection of interactions. Directed experimental work 
could be undertaken to test for additional interactions.

Representative air toxic combinations and demo-
graphic risk factors. Finally, one of the advantages 
of DEEP is that the trees constituting its underlying 
XGBoost models can be visualized and interpreted, 
which is difficult to do for several other machine 
learning methods. However, since it is difficult 
to simultaneously depict all the trees inferred by 
DEEP, we visualized sample trees that contained 
the most strongly associated multi–air toxic combi-
nation for each childhood asthma outcome. Sample 
decision trees inferred by DEEP for each of the out-
comes are shown in Figures 4, 5, and 6, respectively.  
To provide an additional level of interpretation, 
we also compared the demographic characteristics 
(age, sex, race and ethnicity, and family income) of 
children exposed to each of these combinations with 
those of children who were not exposed (Tables 4, 5, 
and 6). Differences could suggest demographic risk 
factors that may increase a child’s exposure to these 
multi–air toxic combinations.

Acrylic acid and cobalt compounds was the air 
toxic combination associated with daily controller 
medication use with the highest OR of 3.19 (Fig-
ures 3 and 4). Children exposed to this combina-
tion were older than those who were not exposed 
(P = 0.02; Table 4).

Acetaldehyde, carbon disulphide, and polychlorinated biphe-
nyls was the air toxic combination most strongly associated with 
lifetime emergency room visit for asthma (OR = 3.10; Figure 3 and 
Figure 5). Children exposed to this combination were younger (P = 
5.34 × 10–8; Table 5) and had lower family income than those who 
were not exposed (P = 0.019; Table 5). Exposed children were also 
less likely to be White (P = 0.0046; Table 5). These observations 
point to social disparities among these groups of children.

The most strongly associated combination for overnight hos-
pitalization was hydroquinone and ethylidene dichloride (OR = 
2.03; Figure 3 and Figure 6). Children exposed to this combination 
were younger (P = 0.00218; Table 6) and had lower family incomes 
(P = 8.26 × 10–5; Table 6) than those who were not exposed.

Table 2. Air toxics identified by DEEP as significantly associated with at least 1 
of the 3 asthma outcomes, either individually or in combination with other air 
toxics

Air toxic Level at residential zip code 
Median (IQR) values (in ng/m3)

Individually 
significant 

Significant in 
combination(s)

1,1,1-trichloroethane 667.7 (120.5, 1452.9) D
1,3-dichloropropene 129 (1.75, 405.18) D
1,4-dioxane 3.16 × 10–3 (1.3 × 10–3, 0.18) O
2,4-toluene diisocyanate 0.08 (7.2 × 10–3, 0.15) D
Acetaldehyde 2420.6 (1967.0, 2768.3) E
Acetamide 2.61 × 10–4 (1.7 × 10–4, 9.1 × 10–4) D, O
Acetophenone 0.1 (0.02, 0.17) D
Acrylamide 4.24 × 10–4 (2.5 × 10–6, 6.6 × 10–3) E
Acrylic acid 1.27 × 10–3 (4.98 × 10–4, 0.06) D D, E, O
Arsenic compounds 0.73 (0.49, 1.13) O
Benzidine 1.44 × 10–5 (1.2 × 10–5, 2.5 × 10–5) D
Beryllium compounds 0.16 (0.09, 0.27) E
Carbon disulfide 5.66 (5.59, 9.57) E
Carbonyl sulfide 0.03 (1.77 × 10–3, 0.25) O
Chlorine 0.91 (0.39, 1.28) D
Cobalt compounds 0.15 (0.10, 0.19) D
Cresol cresylic acid 20.05 (15.1, 24.9) D
Dimethyl phthalate 0.07 (0.04, 0.08) D
Ethyl chloride 8.21 (7.8 × 10–3, 20.26) O D
Ethylidene dichloride 0.12 (0.02, 0.22) O
Glycol ethers 12.67 (2.58, 117.36) O
Hexachlorobenzene 1.2 × 10–6 (2.47 × 10–7, 3.91 × 10–4) D D
Hydrochloric acid 208.8 (146.8, 301.7) O
Hydroquinone 7.3 × 10–3 (1.4 × 10–3, 0.03) O E, O
Methyl methacrylate 1.62 (1.06, 2.79) O
Mercury compounds 0.4 (0.22, 1.87) E E
Pentachlorophenol 4.6 × 10–7 (0, 1.4 × 10–6) D, E
Phenol 3.34 (2.03, 22.35) D
Phosphorus 0.21 (0.11, 0.31) D
Polychlorinated biphenyls 1.1 × 10–4 (1.2 × 10–5, 8.8 × 10–3) D, E E
Quinoline 0.14 (5.23 × 10–4, 0.17) O
Toluene 9392 (4984.58, 21,249.3) D
Trichloroethylene 106.4 (18.1, 132.6) O O
Triethylamine 2.81 (1.82, 5.77) O

D, air toxic associated with daily asthma controller medication; E, air toxic associated with 
lifetime emergency room visit for asthma; O, air toxic associated with lifetime overnight 
hospitalization for asthma.
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Discussion
Our application of a machine learning–driven algorithm called 
DEEP to a cohort of children with mild to severe asthma identi-
fied several individual air toxics and combinations of air toxics, 
to which increased exposure during early life was associated with 
adverse asthma outcomes in later childhood. In particular, due to 
the unique ability of DEEP to examine air toxic combinations, we 
identified 16 air toxics that were found to be significantly asso-
ciated with childhood asthma outcomes only in combination  
with other air toxics.

Many air toxics in the identified combinations, such as car-
bonyl sulfide, carbon disulfide, ethyl chloride, and ethylidene 
chloride, are similar in structure and have analogous formation, 
production, chemical fate, and chemical transport properties (40). 
Ten air toxics in the combinations contained chlorine, 3 included 
heavy metal compounds, and many were acidic chemicals. This 
aligns with prior literature implicating acidic chemicals, chlori-
nated chemicals, and heavy metal compounds as risk factors for 
asthma and asthma severity (8, 41–44). However, the biological 
mechanisms through which these combinations of air toxics can 
jointly affect respiratory health and asthma merit further study.

Among the air toxics individually associated with asthma  
outcomes (Figure 2), triethylamine was associated with 
increased overnight hospitalizations for asthma. Triethylamine 
is a clear, colorless liquid used in waterproofing and as a cata-
lyst, corrosion inhibitor, and propellant (45). It is a respiratory 
irritant, to which chronic exposure even at low levels can inhibit 
the function of organic cationic transporters, thus preventing 
efficient uptake of inhaled bronchodilators used to control acute 
asthma symptoms (46, 47).

Acrylic acid was individually associated with daily controller 
medication (Figure 2) and appeared as a member of at least 1 com-
bination associated with all 3 outcomes (Figure 3). Furthermore, 
it was found to interact with other member air toxics of 3 combi-
nations (Table 3). Acrylic acid is used in the manufacture of adhe-
sives, elastomers, plastics, and coatings, as well as floor paints 
and polishers (48). Literature has suggested that the presence of 
water-soluble cobalt complexes increases the conversion of poly-
acrylic acid into acrylic acid, which is more biologically viable. 
Acrylic acid also reacts with cobalt complexes to produce organo-
cobalt complexes (49). Additionally, hydroquinone acts as a stabi-
lizer to prevent the polymerization of acrylic acid, which keeps the 
latter in a form with a lower molecular weight that is more biolog-
ically viable (50, 51). Our results, including evidence of statistical 
interactions between acrylic acid and other chemical compounds, 

suggest further investigation of mechanisms for acrylic acid’s 
associations with adverse childhood asthma outcomes.

Ethyl chloride, also known as chloroethane (C2H5Cl), and 
ethylidene dichloride (C2H4Cl2) are both chlorinated hydrocar-
bons. Ethyl chloride is used as a thickening agent and binder in 
paints and cosmetics, refrigerant, aerosol spray propellant, anes-
thetic, and blowing agent for foam packaging (52). We found 
ethyl chloride to be associated with asthma outcomes, both as an 
individual air toxic (overnight hospitalizations; Figure 2) and as 
a member of multi–air toxic combinations (daily controller med-
ication; Figure 3). Ethylidene dichloride, which is used mainly as 
a solvent for plastics, oils, and fats, and as a degreaser and fumi-
gant in insecticide sprays (53), appeared as a member of several 
combinations associated with lifetime overnight hospitalization 
for asthma (Figure 3). Both these compounds are well-known 
members of the chloroethane family, which comprises liposol-
uble chemicals that can be taken up by the lipoprotein within 
the alveolar film layer (AFL) (54). AFL disruption is observed in 
multiple pulmonary diseases, including acute respiratory distress 
syndrome, infant respiratory distress syndrome, emphysema, 
chronic obstructive pulmonary disease, asthma, chronic bron-
chitis, pneumonia, pulmonary infections, and idiopathic pulmo-
nary fibrosis (55). Thus, chronic exposure to ethyl chloride and 
ethylidene dichloride may lead to dysfunction in the AFL, which 
may contribute to worse asthma control.

Hydroquinone, a commonly studied air toxic, was also identi-
fied in our analyses. While exposure to higher levels of hydroqui-
none alone was not associated with overnight hospitalization for 
asthma, DEEP identified it as a member of several multi–air toxic 
combinations associated with this outcome (Figure 3). Hydroqui-
none is commonly found in the indoor environment, and exposure 
to it has been associated with airway hypersensitivity (56–59). 
Hydroquinone is widely seen in cosmetic and health products, 
including skin creams (60). It is thought to prevent the polymer-
ization of acrylic acid, methyl methacrylate, cyanoacrylate, and 
other monomers that are susceptible to radical-initiated polymer-
ization, thus allowing them to persist in their original form (50, 51). 
This suggests a mechanism through which the identified synergis-
tic combination of hydroquinone with acrylic acid (emergency 
room visit; Figure 3) is associated with adverse asthma outcomes. 
Although our analysis did not find a statistically significant inter-
action between hydroquinone and ethylidene dichloride, poten-
tially due to lower exposure levels, hydroquinone is industrially 
added to shelf ethylidene dichloride as a stabilizer (61). This sug-
gests that in the presence of hydroquinone, ethylidene dichloride 

Table 3. Air toxic combinations associated with asthma outcomes with statistically significant interactions between combination 
members

Outcome Air toxic combination Interactions P value
Daily controller medication Acrylic acid & dimethyl phthalate Acrylic acid & dimethyl phthalate 0.02
Daily controller medication Acrylic acid & cobalt compounds Acrylic acid & cobalt compounds 0.02
Emergency room visit Acrylic acid & hydroquinone Acrylic acid & hydroquinone <0.004

The P values are for the interaction term of multivariable logistic regression models where asthma outcome was the dependent variable and independent 
variables included member air toxic levels, interaction term, and covariates (age, sex, race and ethnicity, family income).
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temperature, meteorology, precipitation, and solar radiation, have 
already been incorporated into NATA’s model (31). This level of 
comprehensive modeling is typically not available from personal 
or local monitoring. Finally, local measurements may also have 
detection and quantification limits, while NATA is able to estimate 
air toxics even at lower levels and over a longer period. Because of 
these strengths, we chose to study NATA data in this work.

We recognize that our results do not provide evidence of a 
causal effect of any chemical on adverse childhood asthma out-
comes, which will need further investigation. Additionally, our 
geocoding was based on a single zip code for each participant and 
so would not account for potentially dynamic exposures due to 
residential moves. Last, our study participants were all from the 
New York, New Jersey, and Connecticut tristate area. Thus, our 
findings may not generalize to other US regions or parts of the 
world. Future studies could examine combinations from other 
geographical regions and/or utilize direct air sampling to confirm 
the combinations identified in this study.

In conclusion, this study demonstrated innovative use of 
data science methods and data sources to identify specific com-
binations of early-life air toxic exposures associated with later 
childhood asthma outcomes. Our study suggests that chemical 
pollutants should be closely monitored together in combination, 
especially in locations with vulnerable populations.

Methods
An overview of the study approach is shown in Figure 1.

Study population. The study population included children with 
asthma from the ARIA study, a cohort recruited from the Mount Sinai 
Health System, New York, New York, USA (32). The study was approved 
by the Mount Sinai IRB. Children with asthma had mild to severe per-
sistent asthma according to National Asthma Education and Prevention 
Program/National Heart Lung Blood Institute Expert Panel Report 

is less likely to react with other chemicals in the environment and 
thus retains its toxic form longer (similar to acrylic acid). Thus, it is 
still possible that hydroquinone and ethylidene dichloride may act 
synergistically, but this needs to be investigated in future studies.

Although our study has advanced the identification of air toxic 
combinations associated with childhood asthma outcomes, it also 
has limitations. We used the NATA model (31) to estimate expo-
sures rather than personal sampling or local monitors. Collecting 
personal or locally monitored measures for 125 air toxics at each 
cohort participant’s residence would be logistically and financially 
challenging. Given this, NATA is commonly used for estimating 
ambient exposures, since it is a well-validated deterministic dis-
persion chemical transportation model created by the EPA that 
accounts for sources included in the NATA emission inventory 
(31). NATA estimates of a given air toxic may underreport a per-
sonally or locally monitored value, since the latter may include 
emissions from indoor and undocumented sources not in the 
EPA’s inventory. For instance, higher personally monitored ben-
zene concentrations relative to NATA-predicted values are likely 
due, at least in part, to indoor sources not included in the EPA’s 
inventory (62). Other studies also found discrepancies between 
NATA estimates and monitored chemical concentrations, due 
again, in part, to local or indoor sources (63, 64).

Despite the above limitations, using NATA as the primary 
source of exposure estimates has several strengths over locally 
monitored values. First, NATA has a finer geographical prediction 
resolution and spread than currently available monitoring sites 
(31). This enabled us to include participants in our study who may 
not have had a monitoring site close to their residence. Second, 
NATA data are generated from an advanced chemical transporta-
tion model that aggregates exposure over a long period and thus 
is able to capture transient exposures. Also, several factors poten-
tially affecting air toxic estimates, such as seasonality, ambient 

Figure 4. A sample decision tree learned by DEEP to predict daily asthma controller medication using NATA-derived air toxic data geocoded to patients 
(n = 149). Each node in the tree indicates the number of participants satisfying the air toxic decision path until that point and the percentage of partici-
pants with that outcome. The sample corresponding to each node is stratified into 2 subpopulations based on the air toxic and its threshold associated 
with the node. The multi–air toxic combination acrylic acid and cobalt compounds, which was most significantly associated with this outcome, is high-
lighted in red.
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sus tract (31). We then used the annual exposure data for that tract 
from the NATA release closest in time following the child’s birth 
year. This choice of year closest to birth was based on prior evidence 
that early-life exposure to air pollution is associated with childhood 
asthma outcomes (66–68). Finally, we retained the 125 air toxics 
that had data available, i.e., no missing data, for all participants in 
the final data set (15, 69).

Covariates. We included age, sex, race and ethnicity, and fam-
ily income as covariates in multivariable regression models based 
on considerations that these variables could confound associations 
between air toxic levels and asthma outcomes. Since the questionnaire 
completed by ARIA participants did not include queries about family 
income, we used the average income of each participant’s residential 
zip code obtained from US Census Business Patterns data (70) as a sur-
rogate for this variable.

Data-driven ExposurE Profile extraction (DEEP). To identify multi–
air toxic exposure profiles associated with asthma outcomes, we devel-
oped a data-driven method called DEEP (Figure 1). DEEP is inspired 
by a simpler method that we previously used to identify multi–air toxic 
combinations associated with children’s cognitive skills (15).

In the first stage of DEEP, exposure combinations are identified 
using XGBoost (33), an algorithm that uses an ensemble method to 
iteratively learn decision trees. XGBoost generally yields strong pre-
dictive power (71, 72) due to its use of multiple optimization methods, 

3 criteria (65) and positive bronchodilator response on spirometry or 
methacholine challenge, with provocative challenge causing a 20% fall 
in forced expiratory volume (PC20) < 12.5 mg/mL. Phenotyping for 
all participants included detailed questionnaires about asthma-related 
symptoms, medication and health care use, and pre- and post-broncho-
dilator spirometry following American Thoracic Society guidelines (65).

Asthma outcomes. We focused on the following 3 self-reported 
asthma-related outcomes: (a) current use of prescribed daily asthma  
controller medication (daily controller medication), (b) at least 1 
emergency department visit for asthma during the patient’s lifetime 
(emergency room visit), and (c) at least 1 overnight hospitalization for 
asthma during the patient’s lifetime (overnight hospitalization).

Air toxic exposures. The air toxic exposure profile of each partic-
ipant was derived from the EPA’s NATA (31). NATA estimates the 
annual ambient concentrations of over a hundred air toxics at each 
census tract in the United States based on emissions inventories and 
advanced computer simulation models (31). Seasonality of air toxics, 
ambient temperature, meteorology, precipitation, and solar radiation 
are incorporated into NATA’s model (31).

NATA data are available for 1996, 1999, 2002, 2005, 2011, and 
2014 (27), and children in this study were born between 1997 and 
2012. To assign the most representative ambient air toxic exposure 
levels to each participant, we mapped the residential zip code of 
each child in our cohort to the geometric centroid of the closest cen-

Figure 5. A sample decision tree learned by DEEP to predict lifetime emergency room visit for asthma from NATA-derived air toxic exposure data 
geocoded to each patient (n = 151). Each node in the tree indicates the number of participants satisfying the air toxic decision path until that point and 
the percentage of participants with that outcome. The sample corresponding to each node is stratified into 2 subpopulations based on the air toxic and 
its threshold associated with the node. The multi–air toxic combination acetaldehyde and carbon disulfide and polychlorinated biphenyls, which was most 
significantly associated with this outcome, is highlighted in red.
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ures 4–6 show several trees derived in the current work. Each deci-
sion node in these trees contains an air toxic and a threshold value 
for its level. It is also connected by 2 edges representing the decisions 
made depending on whether an individual’s exposure was higher or 
lower than the threshold. Each of these edges is connected to either 
the next decision node or a leaf node. A leaf node determines the  
value of the outcome for the individual with the exposure profile rep-
resented by the decision path taken to reach it. Each decision and 
leaf node also represents a subpopulation of the cohort exposed 
to the air toxics on the path taken to reach it. Candidate multi–air  
toxic combinations are then defined as the air toxics and thresholds in 
the decision nodes constituting the paths from the root of a tree to the 

including regularization and gradient boosting, which reduces overfit-
ting of models to training data. Specifically, the full exposure data set 
was randomly split 100 times into training and test sets in an 80:20 
ratio. For each split, an XGBoost model consisting of 100 decision 
trees was trained from the training set to predict the outcome under 
consideration. This model was then applied to and evaluated on the 
corresponding test set in terms of the AUC score (35). The overall pre-
dictability of the target outcome was evaluated in terms of the average 
value of the AUC scores across the 100 training/test splits.

The decision trees constituting each XGBoost model contain 
internal decision nodes, edges, and leaf nodes to represent how the 
value of an outcome could be predicted based on air toxic levels. Fig-

Figure 6. A sample decision tree learned by DEEP to predict lifetime overnight hospitalization for asthma from NATA-derived air toxic data geocoded 
to each participant (n = 151). Each node in the tree indicates the number of participants satisfying the air toxic decision path until that point and the per-
centage of patients with that outcome. The sample corresponding to each node is stratified into 2 subpopulations based on the air toxic and its threshold 
associated with the node. The multi–air toxic combination hydroquinone and ethylidene dichloride, which was most significantly associated with this 
outcome, is highlighted in red.

Table 4. Demographic characteristics of children exposed and not exposed to the acrylic acid and cobalt compounds combination, 
which was associated with daily asthma controller medication

Multi–air toxic combination: acrylic acid & cobalt compounds

Variable
Total  

(n = 149)
Children exposed to combination  

(n = 23)
Children not exposed to combination 

(n = 126) P value
Age, years 12.0 (3.2) 13.7 (3.6) 11.7 (3.0) 0.02
Sex, female 87 (58.4) 14 (60.9) 73 (57.9) 0.97
Race and ethnicity 0.089
  Asian 6 (4.0) 0 (0.0) 6 (4.8)
  Black 26 (17.4) 5 (21.7) 21 (16.7)
  White 57 (38.3) 6 (26.1) 51 (40.5)
  Latino 49 (32.9) 8 (34.8) 41 (32.5)
  Mixed 10 (6.7) 3 (13.0) 7 (5.6)
  Not reported 1 (0.7) 1 (4.3) 0 (0.0)
Income, US$ 49,394.0 (18,846.6) 46,339.2 (15,671.1) 49,951.7 (19,318.1) 0.34

Mean (standard deviation) and number (%) are shown for continuous and categorical variables, respectively. Also shown are P values for the differences 
between the 2 groups of children, calculated using a 2-sided Student’s t test for continuous variables and a χ2 test for categorical variables.
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tion and covariates are its independent variables. The variable repre-
senting the combination takes a value of 1 for individuals exposed to 
it, determined using the threshold values of the constituent air toxics, 
and 0 otherwise. One model is built for each outcome and candidate 
combination, yielding the OR denoting the strength of the association 
between the two. The P values of all the associations are converted 
into FDRs after correcting for multiple-hypothesis testing using the 
Benjamini-Hochberg method (36). In this study, significant associa-
tions were identified as those with FDR ≤ 0.05.

Assessment of synergistic interactions in air toxic combinations. To 
assess potential synergy between members of air toxic combinations 
associated with asthma outcomes, we conducted statistical tests for 
interactions. Interactions between pairs of air toxics were assessed 
through additional multivariable regression models where the out-
come was the dependent variable and predictors included the levels of 
the 2 toxics, their product as a representative of their interaction, and 

leaf nodes. We calculated the frequency of each combination as the num-
ber of XGBoost models (out of 100) where it was included in at least 1 of 
the constituent trees and set a threshold of at least 10 XGBoost models to 
identify the most relevant combinations. Note that, if 2 or more variables 
are highly correlated, and thus similarly associated with the outcome, 
a key characteristic of the decision trees in the XGBoost model is that 
they will include only 1 of these variables as an internal decision node. 
Thus, unlike traditional regression models, XGBoost is not as adversely 
affected by collinearity among the input variables. Furthermore, DEEP 
executes XGBoost 100 times on randomly selected training sets, and dif-
ferent selections of these variables may be included in the different trees 
inferred, thus enhancing the coverage of the air toxic profiles.

In the second stage of DEEP, a multivariable linear regression 
model is built to assess the association of a candidate combination 
with the target outcome, adjusted for covariates. The asthma outcome 
is the dependent variable in this model, while the air toxic combina-

Table 5. Demographic characteristics of children exposed and not exposed to the acetaldehyde and carbon disulfide and 
polychlorinated biphenyls combination, which was associated with lifetime emergency room visit for asthma

Multi–air toxic combination: acetaldehyde & carbon disulfide & polychlorinated biphenyls

Variable
Total  

(n = 151)
Children exposed to combination  

(n = 48)
Children not exposed to combination  

(n = 103) P value
Age, years 12.0 (3.2) 10.0 (2.6) 12.9 (3.0) 5.34 × 10–8

Sex, female 89 (58.9) 28 (58.3) 61 (59.2) 0.94
Race/ethnicity 0.0046
  Asian 6 (4.0) 3 (6.2) 3 (2.9)
  Black 26 (17.2) 14 (29.2) 12 (11.7)
  White 57 (37.7) 9 (18.8) 48 (46.6)
  Latino 51 (33.8) 19 (39.6) 32 (31.1)
  Mixed 10 (6.6) 2 (4.2) 8 (7.8)
  Not reported 1 (0.7) 1 (2.1) 0 (0.0)
Income, US$ 49,349.3 (18,725.8) 44,708.3 (14,015.1) 51,512.0 (20,194.5) 0.019

Mean (standard deviation) and number (%) are shown for continuous and categorical variables, respectively. Also shown are P values for the differences 
between the 2 groups of children, calculated using a 2-sided Student’s t test for continuous variables and a χ2 test for categorical variables.

Table 6. Demographic characteristics of children exposed and not exposed to the hydroquinone and ethylidene dichloride combination, 
which was associated with lifetime overnight hospitalization for asthma

Multi–air toxic combination: hydroquinone & ethylidene dichloride

Variable Total (n = 151)
Children exposed to combination  

(n = 17)
Children not exposed to combination  

(n = 134) P value
Age, years 12.0 (3.2) 9.9 (2.5) 12.2 (3.2) 0.0022
Sex, female 89 (58.9) 12 (70.6) 77 (57.5) 0.44
Race and ethnicity 0.32
 Asian 6 (4.0) 0 (0.0) 6 (4.5)
  Black 26 (17.2) 2 (11.8) 24 (17.9)
  White 57 (37.7) 4 (23.5) 53 (39.6)
  Latino 51 (33.8) 10 (58.8) 41 (30.6)
  Mixed 10 (6.6) 1 (5.9) 9 (6.7)
  Not reported 1 (0.7) 0 (0.0) 1 (0.7)
Income, US$ 49,349.3 (18,725.8) 40,226.8 (6929.4) 50,506.6 (19,420.4) 8.26 × 10–5

Mean (standard deviation) and number (%) are shown for the continuous and categorical variables, respectively. Also shown are P values for the 
differences between the 2 groups of children, calculated using a 2-sided Student’s t test for continuous variables and a χ2 test for categorical variables.
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