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Abstract: Exposure levels to environmental pollutants vary significantly among different populations.
These inequities in exposure to hazardous air pollutants (HAP) among different populations can
contribute to disparities in neurodevelopmental outcomes. The aim of this study was to determine
if exposure to HAP varies by maternal nativity status, a demographic marker often overlooked
in the study of health disparities. We also assessed if those inequalities in exposure levels are
associated with neurodevelopmental measures in young children. To do this, we obtained data
from the Early Childhood Longitudinal Study-Birth cohort (ECLS-B), a nationally representative
sample of children born in the U.S. in the year 2001 (n = 4750). Bayley’s Short Form-Research
Edition (BSF-R) was used to measure cognitive development at 2 years of age. Using residential
location at nine months of age, participants were assigned exposures to ten HAPs identified as
potentially neurotoxic. Linear regression models were used to assess the joint effect of maternal
nativity status and HAP exposure on neurodevelopment. Results showed inequities in exposure
levels to ten different HAPs among the populations, as approximately 32% of children of foreign-
born mothers were exposed to high levels of HAPs, compared to 21% of children born to U.S.-born
mothers. Adjusting for socioeconomic factors, both isophorone exposure (a marker of industrial
pollution) (−0.04, 95% CI, −0.12, 0.04) and maternal nativity status (−0.17, 95% CI, −0.27, −0.06)
were independently associated with lower standardized BSF-R mental scores in children. Interaction
between nativity status and isophorone was not statistically significant, but the change in mental
scores associated with isophorone exposure was greater in children of foreign-born mothers compared
to children of U.S.-born mothers (−0.12, vs. −0.03, p = 0.2). In conclusion, exposure to HAPs within
the highest quartile was more commonly found among children of foreign-born mothers as compared
to children of US-born mothers, indicating inequities in pollutant exposure by nativity status within
urban populations. Exposures associated with nativity status may negatively contribute to children’s
neurodevelopment.

Keywords: air pollution; neurotoxins; neurodevelopment; nativity; maternal; disparities; child
development

1. Introduction

Disparities in neurodevelopment have been described in children with different
socio-demographic indicators [1–3]. Children in communities of color, immigrant and low-
income families have been shown to be at high risk for adverse health and developmental
outcomes [1–6]. Immigrant health is of particular interest due to the increasing influx of
global migration, including within the United States (US). Conflicting theories regarding
immigrant health challenges what is understood about the relationships between socioeco-
nomic indicators and health outcomes [7,8]. With the immigrant population projected to
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double by 2050, understanding the determinants of immigrant health and their children’s
health is essential in understanding how future health outcomes will be shaped in the
US [9].

One way in which health disparities arise between populations of different socioeco-
nomic status is through differences in exposure levels to environmental toxicants [2,10].
In particular, children’s neurodevelopment is highly sensitive to exposure to air pollu-
tants [11,12]. For example, growing evidence has shown that exposure to hazardous
air pollution is concentrated in urban areas, disproportionately affecting minorities and
low-income communities, and may therefore contribute to the observed differences in neu-
rodevelopment [13–16]. Elevated pollutant concentrations are highly prevalent in urban
areas, largely due to motor vehicle traffic, industrial activities and biomass burning [17].

Exposure to hazardous air pollutants (HAP), defined by the US Environmental Pro-
tection Agency (EPA) as “toxic air pollutants harmful to human health”, has been linked
to adverse neurodevelopmental outcomes such as autism and attention deficit disorder
(ADD) [18–25]. In addition, many HAPS commonly found in urban environments have
been identified as being disruptive to early brain development, including benzene, diesel,
ethylbenzene, chloroform, toluene, styrene, manganese, polycyclic aromatic hydrocarbons
(PAH)/polycyclic organic matter (POM), xylene, and isophorone [18,26–33]. Growing evi-
dence highlights prenatal exposures to HAPs contributing to the disruption of fetal brain de-
velopment introducing vulnerabilities to adverse neurodevelopment in children [31,34,35].
Previous studies showed the relationship between early life exposure to benzene, toluene,
ethylbenzene, and xylene (BTEX), and neurodevelopment, as measured by the develop-
ment of attention deficit/hyperactivity disorder (ADHD) as well as greater use of academic
support services in children highly exposed to this form of air pollution [36]. Similarly,
other studies have shown that early life exposure to diesel and PAH/POM, additional
markers of pollution due to vehicular traffic, were associated with lower cognitive develop-
ment scores in children [29,37,38]. Other pollutants such as chloroform, styrene, manganese
and isophorone, which are typically emitted by urban stationary industries, are known neu-
rotoxins and are also found to be associated with cognitive developmental deficits [26,28].
Previous studies have found early life and chronic exposure to these industrially-emitted
pollutants are associated with lower cognitive development scores [39], autism [40], and
brain tumors [41,42]. A recent study found racial and ethnic disparities in school-based
environmental exposures to neurotoxicants and proposed the potential negative impact on
school-based performance [43]. Though the exact mechanism by which these air pollutants
affect neurodevelopment is unknown, their neurotoxic properties suggest that they have
the potential to contribute to neurodevelopmental deficits in children and may contribute
to disparities among different populations [19,44].

Neurodevelopmental disparities among populations are complex and have multifac-
torial outcomes. In a previous study, the interaction between exposures to air pollutants
and the social home environment on neurodevelopmental outcomes was investigated and
found them to independently influence standardized math test scores in urban children [45].
A recent study using national-level datasets examined children’s residential exposures to
vehicular HAPs, and found racial and ethnic disparities also noting disproportionately
high exposures among children from non-English speaking homes, an indicator of nativity
status [46]. Using a similar approach, the objective of this study is to further the investiga-
tion of disparities in neurodevelopmental outcomes in children by assessing HAP exposure
profiles by maternal nativity status. We hypothesize that maternal nativity status is an
important, but often overlooked factor when examining neurodevelopmental disparities
caused or aggravated by exposure differences to air pollution during childhood.

2. Methods

This study was reviewed and approved by the Institute of Education Sciences Data
Security Office and by the Institutional Review Board of the Icahn School of Medicine at
Mount Sinai.
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2.1. Study Population

We obtained data from the Early Childhood Longitudinal Study Birth ECLS-B cohort,
a nationally representative sample of approximately 10,700 children born in the U.S. in
2001. All sample sizes throughout this study were rounded to the nearest 50 per the data
requirements of the National Center of Education Statistics (NCES). Data on maternal
demographics, children’s residential ZIP code, and children’s neurodevelopmental assess-
ments from the ECLS-B were collected and used for analysis. Children were enrolled at 9
months and then followed through kindergarten entry, participating in interposed study
visits designed to assess their cognitive, socio-emotional, and physical development [47].
The children’s assessments were supported by interviews and questionnaires administered
to parents, child care professionals, and education providers detailing the characteris-
tics and experiences that may be associated with their development and kindergarten
readiness [47]. Using these data, comparisons were made to identify neurodevelopmental
differences among children of U.S.-born and foreign-born mothers exposed to hazardous
air pollutants. Maternal nativity was used due to 95% of primary caregivers identifying as
biological mothers for the children [48]. Eligibility was limited to those children whose data
on pollutant exposure was available and who had completed the cognitive assessments at
the age 2 study visit. Exclusions were made for those who did not reside in urban areas
and did not have complete information on influential variables (n = 4750). Restriction to
urban residence was done to appropriately capture the populations at the greatest risk
of exposure to high levels of hazardous air pollution and to control for socioeconomic
indicators that may vary by urbanicity of residence and confound associations between
environmental exposure and neurodevelopment. Maternal nativity status was assigned
based on self-reported birth country and categorized as either born in the U.S. or foreign-
born. All children were US born, but for the purpose of this study were assigned nativity
status based on maternal nativity.

2.2. Outcome Assessment

Obtained from ECLS-B cohort, measures of neurodevelopment were assessed using
the Bayley’s Short Form-Research Edition (BSF-R), an adaptation of the Bayley Scales of
Infant Development-Second Edition (BSID-II) [47]. This modified assessment tool was used
to measure a child’s babbling, vocabulary, active exploration, understanding of repetitive
actions, and problem solving skills near their nine month and two year milestones [47]. The
BSF-R mental scores obtained from the assessment administered at the study visit when
children were approximately two years old and were used to represent neurodevelopmental
outcomes in this study. Distribution of scores did not meet normality assumptions, and
were therefore standardized using a mean of zero and a standard deviation of one [49].
Thus, these BSF-R mental z-scores were used in all further analyses as the measure of
children’s neurodevelopment.

2.3. Exposure Assessment

For this study, we prioritized ten hazardous air pollutants previously identified as
suspected neurotoxins in humans and present in the urban environment [26]. Selected
pollutants included benzene, diesel, ethylbenzene, chloroform, toluene, styrene, man-
ganese, PAH/POM, xylene, and isophorone. Obtained from the 2002 National Air Toxics
Assessment (NATA) database, pollutant exposure profiles in the population were based
on modeled annual ambient concentration estimates and used for analysis. NATA serves
as the U.S. census-tract level air toxic evaluation tool for the Environmental Protection
Agency (EPA). We assigned individual exposure levels by linking the NATA database to the
children’s residential zip code at nine months. NATA estimates ambient concentrations of
pollutants at each census-tract in the US. In order to obtain exposure estimates for a child’s
zip code of residence, we constructed weighted average exposures for each zip code using
the percent of residential housing within each zip code that lies within each census-tract.
These data were obtained from the Office of Housing and Urban Development and United
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States Postal Service ZIP Crosswalk files. This method is consistent with previous research
linking NATA to ECLS-B data [50]. Rural-Urban Continuum Codes linked to each child’s
zip codes were used to determine urban residence.

We compared pollutant exposure profiles among children of foreign-born and U.S.-
born mothers. Individual and collective exposure measures were evaluated, but only
isophorone displayed a crude association with BSF-R mental z-scores and was subse-
quently used for further assessments. To account for the rightly-skewed distribution,
isophorone along with the other nine pollutants were dichotomized at the 75th quartile
to obtain ‘high’ and ‘low’ exposure categories [32,36]. This approach reduces exposure
measure susceptibility to overly influential outliers occurring when totaling the individual-
level estimated exposure concentrations [32]. Estimated isophorone exposures greater than
the 75th quartiles (≥7.90 ng/m3) were categorized as ‘highest quartile’ exposure and expo-
sures below the 75th quartile (<7.90 ng/m3) were deemed as ‘lowest quartile’ exposures.
Similarly, a composite variable summing all ten individually dichotomized pollutants was
created. This variable was designed to represent a marker for children exposed to the
highest quartile across all ten pollutants. Highest and lowest quartile exposure categories
for all pollutants were relative to our study parameters and did not reflect or exceed EPA
standards.

2.4. Identification of Influential Variables

Influential variables that may have affected the outcome of interest and exposures were
identified through directed acyclic graph analysis and review of existing literature. Selected
variables included: maternal race, maternal education, birth weight, socioeconomic status
(SES), and neighborhood deprivation index (NDI) [20,36,51,52]. We used four classifications
to identify race/ethnicity: White (non-Hispanic), Black (non-Hispanic), Hispanic, and
Asian (non-Hispanic). Other classifications were collapsed and combined to account for
low frequency counts in other racial/ethnic classes. We also collapsed maternal education
attainment into three broad categories: those who received a high school education and
below, those who received some college education, and those who received a bachelor’s
degree or above. Maternal education was limited to highlight demographic characteristics
of the study population and was not controlled for in the analysis due to it being captured
by the SES variable. We classified birth weights obtained from birth certificates as: normal
birth weight (weighing >2500 g at birth), low birth weight (1500 ≥ 2499 g at birth), and
very low birth weight (weighing <1500 g at birth). ECLS-B constructed a quintile-based
SES variable that incorporated parental education, occupational prestige, and household
income [47]. The NDI was calculated using each child’s census-tract residential zip code
in conjunction with several census-based socio-demographic factors identified through
principal component analysis [53]. Retained from the analysis, the following variables
from the 2000 U.S. census were used to construct the NDI: percent of males in management
and professional occupations, percent of crowded housing, percent of female-headed
households with dependents, percent of households on public assistance, percent below
the federal poverty line, percent earning less than a high school education, and the percent
unemployed [53]. A greater NDI corresponds to a greater amount of deprivation and lower
level of neighborhood SES.

2.5. Statistical Analysis

We conducted descriptive analyses using chi square to assess the demographic char-
acteristics of the population based on exposure status. Survey design accommodated for
complex sampling methods including weighting, stratification, and clustering. Using linear
regression models, we assessed independent associations between each of the two exposure
parameters and neurodevelopment. Multiple linear regression models were used to assess
the joint effects of maternal nativity status and exposure to HAPs on BSF-R mental z-scores.
Crude and adjusted effect estimates were reported with corresponding confidence intervals.
Effect modification was explored through the inclusion of an interaction term between
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maternal nativity status and isophorone exposure. All associations were assessed at alpha
level 0.05. All analyses were performed using SAS version 9.4 (SAS, Cary, NC, US).

3. Results
3.1. Diversity in the Demographic Characteristics of the Population

The total population was comprised of 4750 children, of which 3450 (74%) were chil-
dren of U.S-born mothers and 1250 (26%) were children of foreign-born mothers (Figure 1).
Demographic characteristics of the sample population are described in Table 1. Children of
U.S-born mothers were more likely to be born to mothers who were White, non-Hispanic,
have some college education, and are more likely to fall within the lowest socioeconomic
quintile. Children of foreign-born mothers were more likely to be Asian, non-Hispanic,
have a mother with a bachelor’s degree or higher, and live in a household likely to fall
within the highest socioeconomic quintile. Among children of U.S-born mothers, 950
(28%) were exposed to levels of isophorone ≥7.90 ng/m3 (Figure 2). Similarly, children of
foreign-born mothers, 350 (29%) were also exposed to levels of isophorone ≥7.90 ng/m3.

3.2. Assessing Air Pollutant Exposure profiles

We compared pollutant exposure profiles among children of U.S-born mothers and
those of foreign-born mothers (Figure 2). Cumulative exposures within the highest quartile
of benzene, diesel, chloroform, ethylbenzene, toluene, styrene, manganese, PAH/POM,
xylenes, and isophorone were highest among children of foreign-born mothers across
all ten pollutants. On average, we found approximately 32% of children of foreign-born
mothers were exposed to the highest quartile of HAP compared to 21% of children of
U.S.-born mothers.
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Figure 1. Flow-diagram illustrating the selection of study population from the ECLS-B (2001 birth cohort). All sample sizes
are rounded to the nearest 50 per data requirements of NCES.
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Table 1. Demographic characteristics in the ECLS-B study population and stratified by maternal
nativity status (2001 birth cohort).

Maternal Nativity Status

Demographic Factor Total Population
(n = 4750) (%)

U.S.-Born
(n = 3450) (%)

Foreign-Born
(n = 1250) (%)

Maternal Race
White, non-Hispanic 47.20 45.05 2.16
Black, non-Hispanic 17.88 16.28 1.59
Hispanic 18.23 9.12 9.12
Asian, non-Hispanic 16.19 1.68 14.51
Other, non-Hispanic 0.49 0.34 0.16

Maternal Education
High school and below 39.20 39.20 39.00
Some college 27.80 30.70 19.60
Bachelor’s Degree & above 33.00 30.10 41.40

Birth weight
Normal 75.20 71.34 86.60
Moderately low 15.20 17.44 8.42
Very low 9.54 11.21 5.02

SES Index Quintile
First 14.80 13.88 17.22
Second 17.40 17.74 16.33
Third 19.60 21.44 14.39
Fourth 19.80 21.75 14.63
Fifth 28.30 25.19 37.43

NDI mean (SD) −0.11 (1.02) −0.11 (1.00) −0.12 (1.09)
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3.3. Maternal Nativity Status Associated with Measures of Cognitive Development

We examined the relationship between maternal nativity status and cognitive devel-
opment in the children. No differences were observed for models including the composite
variable, therefore individual level results were used. Crude and adjusted effect estimates
of nativity status on neurodevelopment are presented in Table 2. Results of crude effect
estimates show BSF-R mental z-scores of children of foreign-born mothers to be 0.37 [95%
CI: −0.46, −0.28] lower than children of U.S.-born mothers. After adjusting for maternal
race, birth weight, socioeconomic status, and neighborhood deprivation index, BSF-R
mental z-score effect estimates were 0.17 [95% CI: −0.29, −0.06] lower among children of
foreign-born mothers when compared to children of U.S.-born mothers.

Table 2. Crude and adjusted effect estimates and 95% confidence intervals estimating the effect of maternal nativity status and
isophorone exposure on mental z-scores in the ECLS-B population (2001 birth cohort).

Characteristic
Model 1 Model 2 Model 3 a Model 4 a Model 5 a

Estimate [95% CI] Estimate [95% CI] Estimate [95% CI] Estimate [95% CI] Estimate [95% CI]

Nativity status
U.S-born reference reference reference

Foreign-born −0.37
[−0.46, −0.28]

−0.17
[−0.29, −0.06]

−0.17
[−0.27, −0.06]

Isophorone
≤7.90 ng/m3 reference reference reference

≥7.90 ng/m3 −0.14
[−0.24, −0.04]

−0.05
[−0.13, 0.004]

−0.04
[−0.12, 0.04]

a Adjusted for maternal race, birth weight, socioeconomic status, and neighborhood deprivation index.

3.4. Air Pollutant Exposure Assessment

We assessed each pollutant individually to determine its relationship with neurode-
velopment in children. Only isophorone exposure showed an association with neurodevel-
opment and was therefore used for further analysis. Crude and adjusted effect estimates of
isophorone exposure within the highest quartile on neurodevelopment are presented in
Table 2. In crude models, isophorone exposure within the highest quartile was associated
with a lower BSF-R mental z-score of −0.14 [95% CI: −0.24, −0.04]. After adjusting for
sociodemographic factors and NDI, the relationship between isophorone exposure within
the highest quartile and BSF-R mental z-scores was slightly attenuated −0.05 [95% CI:
−0.12, −0.004].

Inclusion of both maternal nativity status and pollutant exposure within adjusted
models was performed to assess the independent effects of maternal nativity and pollutant
exposure on BSF-R mental z-scores (Table 2). Models that included both isophorone (−0.04,
95% CI, −0.12, 0.034) and maternal nativity status (−0.17, 95% CI, −0.29, −0.07) continued
to show independent associations with lower BSF-R mental z-scores, as estimates barely
changed from the single-exposure models. Children of foreign-born mothers continued
to have lower BSF-R mental z-scores, suggesting that additional environmental and/or
social factors that were not accounted for in our study may explain the disparities in
neurodevelopment observed among children of foreign-born mothers.

3.5. Interaction between Isophorone Exposure, Maternal Nativity on Neurodevelopment

We introduced an interaction term into the model to assess the joint effect of mater-
nal nativity status and isophorone exposure on neurodevelopment. Interaction between
nativity status and isophorone was not statistically significant, but the change in BSF-R
mental z-scores associated with isophorone exposure was greater in children of foreign-
born mothers compared to children of U.S.-born mothers (−0.12 95% CI −0.23, −0.01, vs.
−0.03 95% CI −0.10, 0.03, p-value on interaction term = 0.18).
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4. Discussion

The role of maternal nativity status on neurodevelopmental differences was previously
described in the context of socio-demographic factors, but more information about how
environmental exposures may influence health in these populations was lacking [6,49,54].
Findings from that study highlight disproportionately high exposures to vehicular HAPs
among children from non-English speaking households. Similarly, in this study, we ob-
served elevated exposure to all ten neurotoxic air pollutants we assessed in children of
foreign-born mothers, indicating inequities in pollutant exposure by nativity status within
urban populations. Isophorone exposure, a marker of industrial air pollution, was the only
pollutant significantly associated with negative effects on neurodevelopment, indicated by
lower BSF-R mental z-scores. The independent effect of isophorone exposure on neurode-
velopment was persistent even when controlling for maternal nativity. Despite adjusting
for isophorone exposure, deficits in BSF-R mental z-scores among children of foreign-born
mothers persisted, even though foreign-born mothers were not low in SES indicating the
presence of additional contributing factors. Interaction between maternal nativity and
pollutant exposure was not statistically significant, but a reduction in BSF-R mental z-score
associated with isophorone exposure was greatest [55] among children of foreign-born
mothers. This suggests that the effect of isophorone exposure on neurodevelopment may
be greater among children of foreign-born mothers than for those with mothers born in
the US.

Our findings related to neurodevelopment and maternal nativity are not consistent
with sociodemographic indicators of health outcomes used to characterize immigrants [3].
While immigrant communities are often described as low-income, less educated, and more
vulnerable to poor health outcomes, our findings highlight lower mental z-scores among
foreign-born mothers despite being more educated and having higher SES than their US
counterparts. This contributes to the highly varied literature of the theorized immigrant
paradox [55]. In our study, maternal foreign-born status did not serve as a protective
characteristic for their U.S.-born children as proposed by the immigrant paradox, nor did
the more desirable sociodemographic determinants of health. Assessment of environ-
mental exposures was used to address the role it may play in the deficits we observed
due to its link to adverse neurodevelopmental outcomes previously established in the
literature [20,21,26,27,56,57]. Lower BSF-R mental z-scores associated with isophorone
exposure within the highest quartile may serve as an indicator that early-life chronic en-
vironmental exposures can lead to adverse neurodevelopmental effects. This has been
exhibited in previous studies where severe air pollution exposure was shown to be associ-
ated with neuro-inflammation and structural brain alterations resulting in child cognitive
deficits [27,30,58]. In addition, a recent review of studies over a ten year period assessing
the relationship between air pollution and cognitive functions in children showed that
isophorone was linked to lower math skills [28]. While isophorone exposure categories
used for this study are relative and do not reflect or exceed EPA standards, early and
low-dose chronic exposure may affect neurodevelopmental outcomes.

Densely populated industrialized cities are known for poor air quality due to high
emission rates of HAPs caused by industrialization [16,59]. Our study population was
restricted to urban areas in order to capture those at the greatest risk of exposure to these
kinds of pollutants. In addition, studies have provided evidence that residential environ-
ments of specific communities are disproportionately exposed to localized physical and
chemical toxicants that contribute to persistent health disparities [43,60]. Neighborhoods
in which low income, minority or immigrant populations reside tend to have higher levels
of many pollutants [15,61–63]. Evaluation of exposure profiles by maternal nativity status
exhibited inequities in the distribution of exposure to hazardous air pollutants within the
highest quartile among children of foreign-born mothers across all ten pollutants. Sources
of environmental contaminants within these residential environments were not evaluated
within this study, but differential land-use and industrial activity may be contributing
factors to the observed differences in exposure profiles. Differences in exposure profiles
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and subsequent BSF-R mental z-scores among nativity groups alludes to the impact of
environmental exposures, but the results of our independent assessment of both exposures
suggest the potential for additional influences.

There are some limitations to our study. Pollutant exposures were based on 2002
NATA annual ambient estimated mean pollutant concentrations. These exposures were
linked to a child’s address at nine months because address at birth was not available,
limiting our ability to make associations with early exposures to neurotoxicants. This
estimated measure of annual pollutant concentration compromises the ability to draw
temporal associations and introduces susceptibility to misclassification bias [64]. Pollutants
have been previously determined to be highly correlated with one another, and presumably
correlated with other pollutants not assessed in this study [40]. Misclassification and
collinearity may lead to the misrepresentation of the true effect estimates of independent
exposures and need to be considered when assessing significant associations [64]. Also,
selection of isophorone for further assessment was due to the lack of significant associations
among the remaining nine pollutants, but it is unclear if isophorone is itself causally related
to neurodevelopmental effects or if it is a marker for exposure to industrial activities,
although some other evidence suggests that it can cause measurable neurofunctional
changes in children [28]. Other forms of non-differential misclassification were possible
as this study lacked information on individual exposure assessment. Also, our stratum
specific populations may not have been sufficiently powered to detect an interaction,
though a slight change in BSF-R mental z-score was observed in children. Small stratum
specific sample populations also prevented specific information on nativity country and/or
region of origin and maternal length of residence in the US to be identified and evaluated.
Lastly, limitations include the lack of information available to assess pollutant exposures
among foreign-born mothers prior to arriving in the US. Maternal age at US arrival for
foreign-born mothers was not explicitly provided, but data highlighted over 65% migrated
as adults. Sociodemographic characteristics and exposure profiles may vary by maternal
length of time in the US and need to be further assessed in future studies.

In spite of these potential limitations, this paper examines an important factor in chil-
dren’s environmental health: the potential effects of exposure to air pollution to children’s
brain development [12,65,66]. We believe that this paper contributes to our understanding
of nativity-related environmental health disparities.

5. Conclusions

Exposure to hazardous air pollutants within the highest quartile was greatest among
children of foreign-born mothers. Higher exposure levels to one particular air pollutant,
isophorone, among children of foreign-born mothers showed an association with deficits in
neurodevelopment. However, this association did not completely explain the disparities in
BSF-R mental z-scores at age 2 that were observed among children of foreign-born mothers.
Further exploration of the role of nativity status is needed to better understand its potential
impact on health outcomes.
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